Spaces:
Running
on
Zero
Running
on
Zero
Update app.py
Browse files
app.py
CHANGED
@@ -14,14 +14,11 @@ oai_extractor = OAIExtractor()
|
|
14 |
@spaces.GPU
|
15 |
def use_marker(pdf_filepath):
|
16 |
if pdf_filepath is None:
|
17 |
-
raise gr.Error("Please provide some input PDF: upload
|
18 |
-
|
19 |
with open(pdf_filepath, "rb") as f:
|
20 |
pdf_data = f.read()
|
21 |
-
|
22 |
content = Content(content_type="application/pdf", data=pdf_data)
|
23 |
config = MarkdownExtractorConfig(batch_multiplier=2)
|
24 |
-
|
25 |
result = markdown_extractor.extract(content, config)
|
26 |
return result
|
27 |
|
@@ -29,59 +26,35 @@ with gr.Blocks(title="PDF data extraction with Marker & Indexify") as marker_dem
|
|
29 |
gr.HTML("<h1 style='text-align: center'>PDF data extraction with Marker & <a href='https://getindexify.ai/'>Indexify</a></h1>")
|
30 |
gr.HTML("<p style='text-align: center'>Indexify is a scalable realtime and continuous indexing and structured extraction engine for unstructured data to build generative AI applications</p>")
|
31 |
gr.HTML("<h3 style='text-align: center'>If you like this demo, please ⭐ Star us on <a href='https://github.com/tensorlakeai/indexify' target='_blank'>GitHub</a>!</h3>")
|
32 |
-
gr.HTML("<h4 style='text-align: center'>Here's an example notebook that demonstrates how to build a
|
33 |
|
34 |
with gr.Row():
|
35 |
with gr.Column():
|
36 |
gr.HTML(
|
37 |
"<p><b>Step 1:</b> Upload a PDF file from local storage.</p>"
|
38 |
-
|
39 |
"<p style='color: #A0A0A0;'>Use this demo for single PDF file only. "
|
40 |
"You can extract from PDF files continuously and try various other extractors locally with "
|
41 |
"<a href='https://getindexify.ai/'>Indexify</a>.</p>"
|
42 |
)
|
43 |
-
|
44 |
pdf_file = gr.File(type="filepath")
|
45 |
-
|
46 |
with gr.Column():
|
47 |
gr.HTML("<p><b>Step 2:</b> Run the extractor.</p>")
|
48 |
-
|
49 |
-
|
50 |
-
value="Run extractor",
|
51 |
-
variant="primary",
|
52 |
-
)
|
53 |
-
|
54 |
-
model_output_text_box = gr.Textbox(
|
55 |
-
label="Extractor Output",
|
56 |
-
elem_id="model_output_text_box",
|
57 |
-
)
|
58 |
|
59 |
with gr.Row():
|
|
|
60 |
|
61 |
-
|
62 |
-
"<p style='text-align: center'>"
|
63 |
-
"Developed with 🫶 by <a href='https://getindexify.ai/' target='_blank'>Indexify</a> | "
|
64 |
-
"a <a href='https://www.tensorlake.ai/' target='_blank'>Tensorlake</a> product"
|
65 |
-
"</p>"
|
66 |
-
)
|
67 |
-
|
68 |
-
go_button.click(
|
69 |
-
fn=use_marker,
|
70 |
-
inputs = [pdf_file],
|
71 |
-
outputs = [model_output_text_box]
|
72 |
-
)
|
73 |
|
74 |
@spaces.GPU
|
75 |
def use_pdf_extractor(pdf_filepath):
|
76 |
if pdf_filepath is None:
|
77 |
-
raise gr.Error("Please provide some input PDF: upload
|
78 |
-
|
79 |
with open(pdf_filepath, "rb") as f:
|
80 |
pdf_data = f.read()
|
81 |
-
|
82 |
content = Content(content_type="application/pdf", data=pdf_data)
|
83 |
config = PDFExtractorConfig(output_types=["text", "table"])
|
84 |
-
|
85 |
result = pdf_extractor.extract(content, config)
|
86 |
return result
|
87 |
|
@@ -89,59 +62,35 @@ with gr.Blocks(title="PDF data extraction with PDF Extractor & Indexify") as pdf
|
|
89 |
gr.HTML("<h1 style='text-align: center'>PDF data extraction with PDF Extractor & <a href='https://getindexify.ai/'>Indexify</a></h1>")
|
90 |
gr.HTML("<p style='text-align: center'>Indexify is a scalable realtime and continuous indexing and structured extraction engine for unstructured data to build generative AI applications</p>")
|
91 |
gr.HTML("<h3 style='text-align: center'>If you like this demo, please ⭐ Star us on <a href='https://github.com/tensorlakeai/indexify' target='_blank'>GitHub</a>!</h3>")
|
92 |
-
gr.HTML("<h4 style='text-align: center'>Here's an example notebook that demonstrates how to build a
|
93 |
|
94 |
with gr.Row():
|
95 |
with gr.Column():
|
96 |
gr.HTML(
|
97 |
"<p><b>Step 1:</b> Upload a PDF file from local storage.</p>"
|
98 |
-
|
99 |
"<p style='color: #A0A0A0;'>Use this demo for single PDF file only. "
|
100 |
"You can extract from PDF files continuously and try various other extractors locally with "
|
101 |
"<a href='https://getindexify.ai/'>Indexify</a>.</p>"
|
102 |
)
|
103 |
-
|
104 |
pdf_file = gr.File(type="filepath")
|
105 |
-
|
106 |
with gr.Column():
|
107 |
gr.HTML("<p><b>Step 2:</b> Run the extractor.</p>")
|
108 |
-
|
109 |
-
|
110 |
-
value="Run extractor",
|
111 |
-
variant="primary",
|
112 |
-
)
|
113 |
-
|
114 |
-
model_output_text_box = gr.Textbox(
|
115 |
-
label="Extractor Output",
|
116 |
-
elem_id="model_output_text_box",
|
117 |
-
)
|
118 |
|
119 |
with gr.Row():
|
|
|
120 |
|
121 |
-
|
122 |
-
"<p style='text-align: center'>"
|
123 |
-
"Developed with 🫶 by <a href='https://getindexify.ai/' target='_blank'>Indexify</a> | "
|
124 |
-
"a <a href='https://www.tensorlake.ai/' target='_blank'>Tensorlake</a> product"
|
125 |
-
"</p>"
|
126 |
-
)
|
127 |
-
|
128 |
-
go_button.click(
|
129 |
-
fn=use_pdf_extractor,
|
130 |
-
inputs = [pdf_file],
|
131 |
-
outputs = [model_output_text_box]
|
132 |
-
)
|
133 |
|
134 |
@spaces.GPU
|
135 |
def use_gemini(pdf_filepath, key):
|
136 |
if pdf_filepath is None:
|
137 |
-
raise gr.Error("Please provide some input PDF: upload
|
138 |
-
|
139 |
with open(pdf_filepath, "rb") as f:
|
140 |
pdf_data = f.read()
|
141 |
-
|
142 |
content = Content(content_type="application/pdf", data=pdf_data)
|
143 |
config = GeminiExtractorConfig(prompt="Extract all text from the document.", model_name="gemini-1.5-flash", key=key)
|
144 |
-
|
145 |
result = gemini_extractor.extract(content, config)
|
146 |
return result
|
147 |
|
@@ -149,66 +98,37 @@ with gr.Blocks(title="PDF data extraction with Gemini & Indexify") as gemini_dem
|
|
149 |
gr.HTML("<h1 style='text-align: center'>PDF data extraction with Gemini & <a href='https://getindexify.ai/'>Indexify</a></h1>")
|
150 |
gr.HTML("<p style='text-align: center'>Indexify is a scalable realtime and continuous indexing and structured extraction engine for unstructured data to build generative AI applications</p>")
|
151 |
gr.HTML("<h3 style='text-align: center'>If you like this demo, please ⭐ Star us on <a href='https://github.com/tensorlakeai/indexify' target='_blank'>GitHub</a>!</h3>")
|
152 |
-
gr.HTML("<h4 style='text-align: center'>Here's an example notebook that demonstrates how to build a
|
153 |
|
154 |
with gr.Row():
|
155 |
with gr.Column():
|
156 |
gr.HTML(
|
157 |
"<p><b>Step 1:</b> Upload a PDF file from local storage.</p>"
|
158 |
-
|
159 |
"<p style='color: #A0A0A0;'>Use this demo for single PDF file only. "
|
160 |
"You can extract from PDF files continuously and try various other extractors locally with "
|
161 |
"<a href='https://getindexify.ai/'>Indexify</a>.</p>"
|
162 |
)
|
163 |
-
|
164 |
pdf_file = gr.File(type="filepath")
|
165 |
-
|
166 |
gr.HTML("<p><b>Step 2:</b> Enter your API key.</p>")
|
167 |
-
|
168 |
-
key = gr.Textbox(
|
169 |
-
info="Please enter your GEMINI_API_KEY",
|
170 |
-
label="Key:"
|
171 |
-
)
|
172 |
-
|
173 |
with gr.Column():
|
174 |
gr.HTML("<p><b>Step 3:</b> Run the extractor.</p>")
|
175 |
-
|
176 |
-
|
177 |
-
value="Run extractor",
|
178 |
-
variant="primary",
|
179 |
-
)
|
180 |
-
|
181 |
-
model_output_text_box = gr.Textbox(
|
182 |
-
label="Extractor Output",
|
183 |
-
elem_id="model_output_text_box",
|
184 |
-
)
|
185 |
|
186 |
with gr.Row():
|
|
|
187 |
|
188 |
-
|
189 |
-
"<p style='text-align: center'>"
|
190 |
-
"Developed with 🫶 by <a href='https://getindexify.ai/' target='_blank'>Indexify</a> | "
|
191 |
-
"a <a href='https://www.tensorlake.ai/' target='_blank'>Tensorlake</a> product"
|
192 |
-
"</p>"
|
193 |
-
)
|
194 |
-
|
195 |
-
go_button.click(
|
196 |
-
fn=use_gemini,
|
197 |
-
inputs = [pdf_file, key],
|
198 |
-
outputs = [model_output_text_box]
|
199 |
-
)
|
200 |
|
201 |
@spaces.GPU
|
202 |
def use_openai(pdf_filepath, key):
|
203 |
if pdf_filepath is None:
|
204 |
-
raise gr.Error("Please provide some input PDF: upload
|
205 |
-
|
206 |
with open(pdf_filepath, "rb") as f:
|
207 |
pdf_data = f.read()
|
208 |
-
|
209 |
content = Content(content_type="application/pdf", data=pdf_data)
|
210 |
config = OAIExtractorConfig(prompt="Extract all text from the document.", model_name="gpt-4o", key=key)
|
211 |
-
|
212 |
result = oai_extractor.extract(content, config)
|
213 |
return result
|
214 |
|
@@ -216,56 +136,30 @@ with gr.Blocks(title="PDF data extraction with OpenAI & Indexify") as openai_dem
|
|
216 |
gr.HTML("<h1 style='text-align: center'>PDF data extraction with OpenAI & <a href='https://getindexify.ai/'>Indexify</a></h1>")
|
217 |
gr.HTML("<p style='text-align: center'>Indexify is a scalable realtime and continuous indexing and structured extraction engine for unstructured data to build generative AI applications</p>")
|
218 |
gr.HTML("<h3 style='text-align: center'>If you like this demo, please ⭐ Star us on <a href='https://github.com/tensorlakeai/indexify' target='_blank'>GitHub</a>!</h3>")
|
219 |
-
gr.HTML("<h4 style='text-align: center'>Here's an example notebook that demonstrates how to build a
|
220 |
|
221 |
with gr.Row():
|
222 |
with gr.Column():
|
223 |
gr.HTML(
|
224 |
"<p><b>Step 1:</b> Upload a PDF file from local storage.</p>"
|
225 |
-
|
226 |
"<p style='color: #A0A0A0;'>Use this demo for single PDF file only. "
|
227 |
"You can extract from PDF files continuously and try various other extractors locally with "
|
228 |
"<a href='https://getindexify.ai/'>Indexify</a>.</p>"
|
229 |
)
|
230 |
-
|
231 |
pdf_file = gr.File(type="filepath")
|
232 |
-
|
233 |
gr.HTML("<p><b>Step 2:</b> Enter your API key.</p>")
|
234 |
-
|
235 |
-
key = gr.Textbox(
|
236 |
-
info="Please enter your OPENAI_API_KEY",
|
237 |
-
label="Key:"
|
238 |
-
)
|
239 |
-
|
240 |
with gr.Column():
|
241 |
gr.HTML("<p><b>Step 3:</b> Run the extractor.</p>")
|
242 |
-
|
243 |
-
|
244 |
-
value="Run extractor",
|
245 |
-
variant="primary",
|
246 |
-
)
|
247 |
-
|
248 |
-
model_output_text_box = gr.Textbox(
|
249 |
-
label="Extractor Output",
|
250 |
-
elem_id="model_output_text_box",
|
251 |
-
)
|
252 |
|
253 |
with gr.Row():
|
|
|
254 |
|
255 |
-
|
256 |
-
"<p style='text-align: center'>"
|
257 |
-
"Developed with 🫶 by <a href='https://getindexify.ai/' target='_blank'>Indexify</a> | "
|
258 |
-
"a <a href='https://www.tensorlake.ai/' target='_blank'>Tensorlake</a> product"
|
259 |
-
"</p>"
|
260 |
-
)
|
261 |
-
|
262 |
-
go_button.click(
|
263 |
-
fn=use_openai,
|
264 |
-
inputs = [pdf_file, key],
|
265 |
-
outputs = [model_output_text_box]
|
266 |
-
)
|
267 |
|
268 |
demo = gr.TabbedInterface([marker_demo, pdf_demo, gemini_demo, openai_demo], ["Marker Extractor", "PDF Extractor", "Gemini Extractor", "OpenAI Extractor"], theme=gr.themes.Soft())
|
269 |
|
270 |
demo.queue()
|
271 |
-
demo.launch()
|
|
|
14 |
@spaces.GPU
|
15 |
def use_marker(pdf_filepath):
|
16 |
if pdf_filepath is None:
|
17 |
+
raise gr.Error("Please provide some input PDF: upload a PDF file")
|
|
|
18 |
with open(pdf_filepath, "rb") as f:
|
19 |
pdf_data = f.read()
|
|
|
20 |
content = Content(content_type="application/pdf", data=pdf_data)
|
21 |
config = MarkdownExtractorConfig(batch_multiplier=2)
|
|
|
22 |
result = markdown_extractor.extract(content, config)
|
23 |
return result
|
24 |
|
|
|
26 |
gr.HTML("<h1 style='text-align: center'>PDF data extraction with Marker & <a href='https://getindexify.ai/'>Indexify</a></h1>")
|
27 |
gr.HTML("<p style='text-align: center'>Indexify is a scalable realtime and continuous indexing and structured extraction engine for unstructured data to build generative AI applications</p>")
|
28 |
gr.HTML("<h3 style='text-align: center'>If you like this demo, please ⭐ Star us on <a href='https://github.com/tensorlakeai/indexify' target='_blank'>GitHub</a>!</h3>")
|
29 |
+
gr.HTML("<h4 style='text-align: center'>Here's an example notebook that demonstrates how to build a continuous <a href='https://github.com/tensorlakeai/indexify/blob/main/docs/docs/examples/efficient_rag.ipynb' target='_blank'>extraction pipeline</a> with Indexify</h4>")
|
30 |
|
31 |
with gr.Row():
|
32 |
with gr.Column():
|
33 |
gr.HTML(
|
34 |
"<p><b>Step 1:</b> Upload a PDF file from local storage.</p>"
|
|
|
35 |
"<p style='color: #A0A0A0;'>Use this demo for single PDF file only. "
|
36 |
"You can extract from PDF files continuously and try various other extractors locally with "
|
37 |
"<a href='https://getindexify.ai/'>Indexify</a>.</p>"
|
38 |
)
|
|
|
39 |
pdf_file = gr.File(type="filepath")
|
|
|
40 |
with gr.Column():
|
41 |
gr.HTML("<p><b>Step 2:</b> Run the extractor.</p>")
|
42 |
+
go_button = gr.Button(value="Run extractor", variant="primary")
|
43 |
+
model_output_text_box = gr.Textbox(label="Extractor Output", elem_id="model_output_text_box")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
44 |
|
45 |
with gr.Row():
|
46 |
+
gr.HTML("<p style='text-align: center'>Developed with 🫶 by <a href='https://getindexify.ai/' target='_blank'>Indexify</a> | a <a href='https://www.tensorlake.ai/' target='_blank'>Tensorlake</a> product</p>")
|
47 |
|
48 |
+
go_button.click(fn=use_marker, inputs=[pdf_file], outputs=[model_output_text_box])
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
49 |
|
50 |
@spaces.GPU
|
51 |
def use_pdf_extractor(pdf_filepath):
|
52 |
if pdf_filepath is None:
|
53 |
+
raise gr.Error("Please provide some input PDF: upload a PDF file")
|
|
|
54 |
with open(pdf_filepath, "rb") as f:
|
55 |
pdf_data = f.read()
|
|
|
56 |
content = Content(content_type="application/pdf", data=pdf_data)
|
57 |
config = PDFExtractorConfig(output_types=["text", "table"])
|
|
|
58 |
result = pdf_extractor.extract(content, config)
|
59 |
return result
|
60 |
|
|
|
62 |
gr.HTML("<h1 style='text-align: center'>PDF data extraction with PDF Extractor & <a href='https://getindexify.ai/'>Indexify</a></h1>")
|
63 |
gr.HTML("<p style='text-align: center'>Indexify is a scalable realtime and continuous indexing and structured extraction engine for unstructured data to build generative AI applications</p>")
|
64 |
gr.HTML("<h3 style='text-align: center'>If you like this demo, please ⭐ Star us on <a href='https://github.com/tensorlakeai/indexify' target='_blank'>GitHub</a>!</h3>")
|
65 |
+
gr.HTML("<h4 style='text-align: center'>Here's an example notebook that demonstrates how to build a continuous <a href='https://github.com/tensorlakeai/indexify/blob/main/docs/docs/examples/SEC_10_K_docs.ipynb' target='_blank'>extraction pipeline</a> with Indexify</h4>")
|
66 |
|
67 |
with gr.Row():
|
68 |
with gr.Column():
|
69 |
gr.HTML(
|
70 |
"<p><b>Step 1:</b> Upload a PDF file from local storage.</p>"
|
|
|
71 |
"<p style='color: #A0A0A0;'>Use this demo for single PDF file only. "
|
72 |
"You can extract from PDF files continuously and try various other extractors locally with "
|
73 |
"<a href='https://getindexify.ai/'>Indexify</a>.</p>"
|
74 |
)
|
|
|
75 |
pdf_file = gr.File(type="filepath")
|
|
|
76 |
with gr.Column():
|
77 |
gr.HTML("<p><b>Step 2:</b> Run the extractor.</p>")
|
78 |
+
go_button = gr.Button(value="Run extractor", variant="primary")
|
79 |
+
model_output_text_box = gr.Textbox(label="Extractor Output", elem_id="model_output_text_box")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
80 |
|
81 |
with gr.Row():
|
82 |
+
gr.HTML("<p style='text-align: center'>Developed with 🫶 by <a href='https://getindexify.ai/' target='_blank'>Indexify</a> | a <a href='https://www.tensorlake.ai/' target='_blank'>Tensorlake</a> product</p>")
|
83 |
|
84 |
+
go_button.click(fn=use_pdf_extractor, inputs=[pdf_file], outputs=[model_output_text_box])
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
85 |
|
86 |
@spaces.GPU
|
87 |
def use_gemini(pdf_filepath, key):
|
88 |
if pdf_filepath is None:
|
89 |
+
raise gr.Error("Please provide some input PDF: upload a PDF file")
|
|
|
90 |
with open(pdf_filepath, "rb") as f:
|
91 |
pdf_data = f.read()
|
|
|
92 |
content = Content(content_type="application/pdf", data=pdf_data)
|
93 |
config = GeminiExtractorConfig(prompt="Extract all text from the document.", model_name="gemini-1.5-flash", key=key)
|
|
|
94 |
result = gemini_extractor.extract(content, config)
|
95 |
return result
|
96 |
|
|
|
98 |
gr.HTML("<h1 style='text-align: center'>PDF data extraction with Gemini & <a href='https://getindexify.ai/'>Indexify</a></h1>")
|
99 |
gr.HTML("<p style='text-align: center'>Indexify is a scalable realtime and continuous indexing and structured extraction engine for unstructured data to build generative AI applications</p>")
|
100 |
gr.HTML("<h3 style='text-align: center'>If you like this demo, please ⭐ Star us on <a href='https://github.com/tensorlakeai/indexify' target='_blank'>GitHub</a>!</h3>")
|
101 |
+
gr.HTML("<h4 style='text-align: center'>Here's an example notebook that demonstrates how to build a continuous <a href='https://github.com/tensorlakeai/indexify/blob/main/docs/docs/examples/multimodal_gemini.ipynb' target='_blank'>extraction pipeline</a> with Indexify</h4>")
|
102 |
|
103 |
with gr.Row():
|
104 |
with gr.Column():
|
105 |
gr.HTML(
|
106 |
"<p><b>Step 1:</b> Upload a PDF file from local storage.</p>"
|
|
|
107 |
"<p style='color: #A0A0A0;'>Use this demo for single PDF file only. "
|
108 |
"You can extract from PDF files continuously and try various other extractors locally with "
|
109 |
"<a href='https://getindexify.ai/'>Indexify</a>.</p>"
|
110 |
)
|
|
|
111 |
pdf_file = gr.File(type="filepath")
|
|
|
112 |
gr.HTML("<p><b>Step 2:</b> Enter your API key.</p>")
|
113 |
+
key = gr.Textbox(info="Please enter your GEMINI_API_KEY", label="Key:")
|
|
|
|
|
|
|
|
|
|
|
114 |
with gr.Column():
|
115 |
gr.HTML("<p><b>Step 3:</b> Run the extractor.</p>")
|
116 |
+
go_button = gr.Button(value="Run extractor", variant="primary")
|
117 |
+
model_output_text_box = gr.Textbox(label="Extractor Output", elem_id="model_output_text_box")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
118 |
|
119 |
with gr.Row():
|
120 |
+
gr.HTML("<p style='text-align: center'>Developed with 🫶 by <a href='https://getindexify.ai/' target='_blank'>Indexify</a> | a <a href='https://www.tensorlake.ai/' target='_blank'>Tensorlake</a> product</p>")
|
121 |
|
122 |
+
go_button.click(fn=use_gemini, inputs=[pdf_file, key], outputs=[model_output_text_box])
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
123 |
|
124 |
@spaces.GPU
|
125 |
def use_openai(pdf_filepath, key):
|
126 |
if pdf_filepath is None:
|
127 |
+
raise gr.Error("Please provide some input PDF: upload a PDF file")
|
|
|
128 |
with open(pdf_filepath, "rb") as f:
|
129 |
pdf_data = f.read()
|
|
|
130 |
content = Content(content_type="application/pdf", data=pdf_data)
|
131 |
config = OAIExtractorConfig(prompt="Extract all text from the document.", model_name="gpt-4o", key=key)
|
|
|
132 |
result = oai_extractor.extract(content, config)
|
133 |
return result
|
134 |
|
|
|
136 |
gr.HTML("<h1 style='text-align: center'>PDF data extraction with OpenAI & <a href='https://getindexify.ai/'>Indexify</a></h1>")
|
137 |
gr.HTML("<p style='text-align: center'>Indexify is a scalable realtime and continuous indexing and structured extraction engine for unstructured data to build generative AI applications</p>")
|
138 |
gr.HTML("<h3 style='text-align: center'>If you like this demo, please ⭐ Star us on <a href='https://github.com/tensorlakeai/indexify' target='_blank'>GitHub</a>!</h3>")
|
139 |
+
gr.HTML("<h4 style='text-align: center'>Here's an example notebook that demonstrates how to build a continuous <a href='https://github.com/tensorlakeai/indexify/blob/main/docs/docs/examples/multimodal_openai.ipynb' target='_blank'>extraction pipeline</a> with Indexify</h4>")
|
140 |
|
141 |
with gr.Row():
|
142 |
with gr.Column():
|
143 |
gr.HTML(
|
144 |
"<p><b>Step 1:</b> Upload a PDF file from local storage.</p>"
|
|
|
145 |
"<p style='color: #A0A0A0;'>Use this demo for single PDF file only. "
|
146 |
"You can extract from PDF files continuously and try various other extractors locally with "
|
147 |
"<a href='https://getindexify.ai/'>Indexify</a>.</p>"
|
148 |
)
|
|
|
149 |
pdf_file = gr.File(type="filepath")
|
|
|
150 |
gr.HTML("<p><b>Step 2:</b> Enter your API key.</p>")
|
151 |
+
key = gr.Textbox(info="Please enter your OPENAI_API_KEY", label="Key:")
|
|
|
|
|
|
|
|
|
|
|
152 |
with gr.Column():
|
153 |
gr.HTML("<p><b>Step 3:</b> Run the extractor.</p>")
|
154 |
+
go_button = gr.Button(value="Run extractor", variant="primary")
|
155 |
+
model_output_text_box = gr.Textbox(label="Extractor Output", elem_id="model_output_text_box")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
156 |
|
157 |
with gr.Row():
|
158 |
+
gr.HTML("<p style='text-align: center'>Developed with 🫶 by <a href='https://getindexify.ai/' target='_blank'>Indexify</a> | a <a href='https://www.tensorlake.ai/' target='_blank'>Tensorlake</a> product</p>")
|
159 |
|
160 |
+
go_button.click(fn=use_openai, inputs=[pdf_file, key], outputs=[model_output_text_box])
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
161 |
|
162 |
demo = gr.TabbedInterface([marker_demo, pdf_demo, gemini_demo, openai_demo], ["Marker Extractor", "PDF Extractor", "Gemini Extractor", "OpenAI Extractor"], theme=gr.themes.Soft())
|
163 |
|
164 |
demo.queue()
|
165 |
+
demo.launch()
|