import os import gradio as gr from openai import OpenAI from openai.error import BadRequestError # Retrieve the Hugging Face API token from environment variables TOKEN = os.getenv("HF_TOKEN") if not TOKEN: raise ValueError("Hugging Face API token (HF_TOKEN) not set in environment variables.") client = OpenAI( base_url="https://api-inference.huggingface.co/v1/", api_key=TOKEN, ) def respond( message, history: list[tuple[str, str]], system_message, max_tokens, temperature, top_p, ): messages = [{"role": "system", "content": system_message}] for user_message, assistant_message in history: if user_message: messages.append({"role": "user", "content": user_message}) if assistant_message: messages.append({"role": "assistant", "content": assistant_message}) messages.append({"role": "user", "content": message}) try: response = "" for msg in client.chat.completions.create( model="meta-llama/Meta-Llama-3.1-405B-Instruct-FP8", max_tokens=max_tokens, stream=True, temperature=temperature, top_p=top_p, messages=messages, ): token = msg.choices[0].delta.content response += token yield response except BadRequestError as e: error_message = f"Error: {e}. Please ensure your Hugging Face token is valid and you have a Pro subscription." yield error_message # Define the Gradio interface demo = gr.ChatInterface( fn=respond, additional_inputs=[ gr.Textbox(value="You are a friendly Chatbot.", label="System message"), gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max new tokens"), gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"), gr.Slider(minimum=0.1, maximum=1.0, value=0.95, step=0.05, label="Top-p (nucleus sampling)"), ], ) if __name__ == "__main__": demo.launch()