File size: 1,321 Bytes
9889763
68be317
 
d40a755
68be317
cf494b2
 
 
68be317
3ed7c41
 
 
 
 
 
871af30
cf494b2
cba50c7
adbdb15
3ed7c41
cba50c7
68b08cf
871af30
68b08cf
cba50c7
 
68b08cf
68be317
68b08cf
 
 
68be317
d40a755
68b08cf
 
cf494b2
 
871af30
 
cba50c7
9889763
cba50c7
adbdb15
 
 
9889763
adbdb15
 
cba50c7
68b08cf
 
9889763
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
import pandas as pd
import gradio as gr
from pyterrier_doc2query import Doc2Query
from pyterrier_gradio import Demo, MarkdownFile, interface, df2code, code2md, EX_D

MODEL = 'macavaney/doc2query-t5-base-msmarco'

doc2query = Doc2Query(MODEL, append=True, num_samples=5)

COLAB_NAME = 'pyterrier_doc2query.ipynb'
COLAB_INSTALL = '''
!pip install -q git+https://github.com/terrier-org/pyterrier
!pip install -q git+https://github.com/terrierteam/pyterrier_doc2query
'''.strip()

def predict(input, model, append, num_samples):
  assert model == MODEL
  doc2query.append = append
  doc2query.num_samples = num_samples
  code = f'''import pandas as pd
from pyterrier_doc2query import Doc2Query

doc2query = Doc2Query({repr(model)}, append={append}, num_samples={num_samples})

doc2query({df2code(input)})
'''
  return (doc2query(input), code2md(code, COLAB_INSTALL, COLAB_NAME))

interface(
  MarkdownFile('README.md'),
  Demo(
    predict,
    EX_D,
    [
    gr.Dropdown(
      choices=[MODEL],
      value=MODEL,
      label='Model',
      interactive=False,
    ), gr.Checkbox(
      value=doc2query.append,
      label="Append",
    ), gr.Slider(
      minimum=1,
      maximum=10,
      value=doc2query.num_samples,
      step=1.,
      label='# Queries'
    )],
  ),
  MarkdownFile('wrapup.md'),
).launch(share=False)