File size: 1,873 Bytes
924cd68
 
fef8ff6
924cd68
 
 
68730a3
924cd68
68730a3
924cd68
 
 
 
6c2eac0
924cd68
 
 
 
8f05d21
924cd68
fef8ff6
924cd68
8f05d21
924cd68
 
 
 
 
 
 
 
68730a3
924cd68
68730a3
924cd68
 
 
 
8f05d21
924cd68
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
### Putting it all together

When you use the document encoder in an indexing pipeline, the rewritten document contents are indexed:

<div class="pipeline">
  <div class="df" title="Document Frame">D</div>
  <div class="transformer attn" title="SPLADE Indexing Transformer">SPLADE</div>
  <div class="df" title="Document Frame">D</div>
  <div class="transformer" title="Indexer">Indexer</div>
  <div class="artefact" title="SPLADE Index">IDX</div>
</div>

```python
import pyterrier as pt
pt.init(version='snapshot')
import pyt_splade

dataset = pt.get_dataset('irds:msmarco-passage')
splade = pyt_splade.SpladeFactory()

indexer = pt.IterDictIndexer('./msmarco_psg', pretokenised=True)

indxer_pipe = splade.indexing() >> indexer
indxer_pipe.index(dataset.get_corpus_iter())
```

Once you built an index, you can build a retrieval pipeline that first encodes the query,
and then performs retrieval:

<div class="pipeline">
  <div class="df" title="Query Frame">Q</div>
  <div class="transformer attn" title="SPLADE Query Transformer">SPLADE</div>
  <div class="df" title="Query Frame">Q</div>
  <div class="transformer" title="Term Frequency Transformer">TF Retriever <div class="artefact" title="SPLADE Index">IDX</div></div>
  <div class="df" title="Result Frame">R</div>
</div>

```python
splade_retr = splade.query() >> pt.BatchRetrieve('./msmarco_psg', wmodel='Tf')
```

### References & Credits

This package uses [Naver's SPLADE repository](https://github.com/naver/splade).

 - Thibault Formal, Benjamin Piwowarski, Stéphane Clinchant. [SPLADE: Sparse Lexical and Expansion Model for First Stage Ranking](https://arxiv.org/abs/2107.05720). SIGIR 2021.
 - Craig Macdonald, Nicola Tonellotto, Sean MacAvaney, Iadh Ounis. [PyTerrier: Declarative Experimentation in Python from BM25 to Dense Retrieval](https://dl.acm.org/doi/abs/10.1145/3459637.3482013). CIKM 2021.