test2023h5 commited on
Commit
616004e
·
verified ·
1 Parent(s): 0b5ea1a

Upload 15 files

Browse files
app.py ADDED
@@ -0,0 +1,37 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ### Introduction
2
+ import simplestart as ss
3
+
4
+ ss.md('''
5
+ ## Iris Dataset
6
+ The Iris dataset is a commonly used classification dataset, compiled by Fisher in 1936. Also known as the Iris flower dataset, it is a multivariate analysis dataset. The dataset contains 150 samples divided into 3 classes, with 50 samples each, and each sample has 4 attributes. The attributes—sepal length, sepal width, petal length, and petal width—can be used to predict which of the three species (Setosa, Versicolor, Virginica) an Iris flower belongs to.
7
+
8
+ ### Iris Flower
9
+ Iris flowers have a rich cultural background. They are named for their petals, which resemble the tails of birds. The Latin genus name "iris" means "rainbow" in Greek, symbolizing the variety of flower colors.
10
+ ''')
11
+
12
+
13
+ with ss.row(style="margin:10px 0"):
14
+ with ss.col():
15
+ ss.image("./images/setosa.webp", title = "Silky Iris Setosa", elevation = 10, width=250)
16
+
17
+ with ss.col():
18
+ ss.image("./images/versicolor.webp", title = "Iris Versicolor", elevation = 10, width=250)
19
+
20
+ with ss.col():
21
+ ss.image("./images/virginica.webp", title = "Virginia Iris Virginica", elevation = 10, width=250)
22
+
23
+ ss.md('''
24
+ ### Machine Learning
25
+
26
+ This tutorial will use the scikit-learn library to build a machine learning classification model to predict the species of Iris flowers. Specifically, we will train and test the model using measurement data from the Iris flowers—including petal and sepal lengths and widths. Our goal is to teach the model how to learn from these labeled data through the application of several classic machine learning algorithms, enabling accurate species predictions for new Iris flowers.
27
+
28
+ ''')
29
+
30
+ ss.md('''
31
+ ###
32
+ References for this example include:
33
+ ---
34
+ [1. Basic Machine Learning: 1.7 Iris Classification](https://blog.csdn.net/qq_47809408/article/details/124632290)
35
+ [2. Introduction to KNN Classification Algorithm: Classifying the Iris Dataset](https://blog.csdn.net/weixin_51756038/article/details/130096706)
36
+ [3. Interactive Web App with Streamlit and Scikit-learn](https://github.com/patrickloeber/streamlit-demo)
37
+ ''')
data/iris.csv ADDED
@@ -0,0 +1,151 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ sepal_length,sepal_width,petal_length,petal_width,species
2
+ 5.1,3.5,1.4,0.2,setosa
3
+ 4.9,3.0,1.4,0.2,setosa
4
+ 4.7,3.2,1.3,0.2,setosa
5
+ 4.6,3.1,1.5,0.2,setosa
6
+ 5.0,3.6,1.4,0.2,setosa
7
+ 5.4,3.9,1.7,0.4,setosa
8
+ 4.6,3.4,1.4,0.3,setosa
9
+ 5.0,3.4,1.5,0.2,setosa
10
+ 4.4,2.9,1.4,0.2,setosa
11
+ 4.9,3.1,1.5,0.1,setosa
12
+ 5.4,3.7,1.5,0.2,setosa
13
+ 4.8,3.4,1.6,0.2,setosa
14
+ 4.8,3.0,1.4,0.1,setosa
15
+ 4.3,3.0,1.1,0.1,setosa
16
+ 5.8,4.0,1.2,0.2,setosa
17
+ 5.7,4.4,1.5,0.4,setosa
18
+ 5.4,3.9,1.3,0.4,setosa
19
+ 5.1,3.5,1.4,0.3,setosa
20
+ 5.7,3.8,1.7,0.3,setosa
21
+ 5.1,3.8,1.5,0.3,setosa
22
+ 5.4,3.4,1.7,0.2,setosa
23
+ 5.1,3.7,1.5,0.4,setosa
24
+ 4.6,3.6,1.0,0.2,setosa
25
+ 5.1,3.3,1.7,0.5,setosa
26
+ 4.8,3.4,1.9,0.2,setosa
27
+ 5.0,3.0,1.6,0.2,setosa
28
+ 5.0,3.4,1.6,0.4,setosa
29
+ 5.2,3.5,1.5,0.2,setosa
30
+ 5.2,3.4,1.4,0.2,setosa
31
+ 4.7,3.2,1.6,0.2,setosa
32
+ 4.8,3.1,1.6,0.2,setosa
33
+ 5.4,3.4,1.5,0.4,setosa
34
+ 5.2,4.1,1.5,0.1,setosa
35
+ 5.5,4.2,1.4,0.2,setosa
36
+ 4.9,3.1,1.5,0.2,setosa
37
+ 5.0,3.2,1.2,0.2,setosa
38
+ 5.5,3.5,1.3,0.2,setosa
39
+ 4.9,3.6,1.4,0.1,setosa
40
+ 4.4,3.0,1.3,0.2,setosa
41
+ 5.1,3.4,1.5,0.2,setosa
42
+ 5.0,3.5,1.3,0.3,setosa
43
+ 4.5,2.3,1.3,0.3,setosa
44
+ 4.4,3.2,1.3,0.2,setosa
45
+ 5.0,3.5,1.6,0.6,setosa
46
+ 5.1,3.8,1.9,0.4,setosa
47
+ 4.8,3.0,1.4,0.3,setosa
48
+ 5.1,3.8,1.6,0.2,setosa
49
+ 4.6,3.2,1.4,0.2,setosa
50
+ 5.3,3.7,1.5,0.2,setosa
51
+ 5.0,3.3,1.4,0.2,setosa
52
+ 7.0,3.2,4.7,1.4,versicolor
53
+ 6.4,3.2,4.5,1.5,versicolor
54
+ 6.9,3.1,4.9,1.5,versicolor
55
+ 5.5,2.3,4.0,1.3,versicolor
56
+ 6.5,2.8,4.6,1.5,versicolor
57
+ 5.7,2.8,4.5,1.3,versicolor
58
+ 6.3,3.3,4.7,1.6,versicolor
59
+ 4.9,2.4,3.3,1.0,versicolor
60
+ 6.6,2.9,4.6,1.3,versicolor
61
+ 5.2,2.7,3.9,1.4,versicolor
62
+ 5.0,2.0,3.5,1.0,versicolor
63
+ 5.9,3.0,4.2,1.5,versicolor
64
+ 6.0,2.2,4.0,1.0,versicolor
65
+ 6.1,2.9,4.7,1.4,versicolor
66
+ 5.6,2.9,3.6,1.3,versicolor
67
+ 6.7,3.1,4.4,1.4,versicolor
68
+ 5.6,3.0,4.5,1.5,versicolor
69
+ 5.8,2.7,4.1,1.0,versicolor
70
+ 6.2,2.2,4.5,1.5,versicolor
71
+ 5.6,2.5,3.9,1.1,versicolor
72
+ 5.9,3.2,4.8,1.8,versicolor
73
+ 6.1,2.8,4.0,1.3,versicolor
74
+ 6.3,2.5,4.9,1.5,versicolor
75
+ 6.1,2.8,4.7,1.2,versicolor
76
+ 6.4,2.9,4.3,1.3,versicolor
77
+ 6.6,3.0,4.4,1.4,versicolor
78
+ 6.8,2.8,4.8,1.4,versicolor
79
+ 6.7,3.0,5.0,1.7,versicolor
80
+ 6.0,2.9,4.5,1.5,versicolor
81
+ 5.7,2.6,3.5,1.0,versicolor
82
+ 5.5,2.4,3.8,1.1,versicolor
83
+ 5.5,2.4,3.7,1.0,versicolor
84
+ 5.8,2.7,3.9,1.2,versicolor
85
+ 6.0,2.7,5.1,1.6,versicolor
86
+ 5.4,3.0,4.5,1.5,versicolor
87
+ 6.0,3.4,4.5,1.6,versicolor
88
+ 6.7,3.1,4.7,1.5,versicolor
89
+ 6.3,2.3,4.4,1.3,versicolor
90
+ 5.6,3.0,4.1,1.3,versicolor
91
+ 5.5,2.5,4.0,1.3,versicolor
92
+ 5.5,2.6,4.4,1.2,versicolor
93
+ 6.1,3.0,4.6,1.4,versicolor
94
+ 5.8,2.6,4.0,1.2,versicolor
95
+ 5.0,2.3,3.3,1.0,versicolor
96
+ 5.6,2.7,4.2,1.3,versicolor
97
+ 5.7,3.0,4.2,1.2,versicolor
98
+ 5.7,2.9,4.2,1.3,versicolor
99
+ 6.2,2.9,4.3,1.3,versicolor
100
+ 5.1,2.5,3.0,1.1,versicolor
101
+ 5.7,2.8,4.1,1.3,versicolor
102
+ 6.3,3.3,6.0,2.5,virginica
103
+ 5.8,2.7,5.1,1.9,virginica
104
+ 7.1,3.0,5.9,2.1,virginica
105
+ 6.3,2.9,5.6,1.8,virginica
106
+ 6.5,3.0,5.8,2.2,virginica
107
+ 7.6,3.0,6.6,2.1,virginica
108
+ 4.9,2.5,4.5,1.7,virginica
109
+ 7.3,2.9,6.3,1.8,virginica
110
+ 6.7,2.5,5.8,1.8,virginica
111
+ 7.2,3.6,6.1,2.5,virginica
112
+ 6.5,3.2,5.1,2.0,virginica
113
+ 6.4,2.7,5.3,1.9,virginica
114
+ 6.8,3.0,5.5,2.1,virginica
115
+ 5.7,2.5,5.0,2.0,virginica
116
+ 5.8,2.8,5.1,2.4,virginica
117
+ 6.4,3.2,5.3,2.3,virginica
118
+ 6.5,3.0,5.5,1.8,virginica
119
+ 7.7,3.8,6.7,2.2,virginica
120
+ 7.7,2.6,6.9,2.3,virginica
121
+ 6.0,2.2,5.0,1.5,virginica
122
+ 6.9,3.2,5.7,2.3,virginica
123
+ 5.6,2.8,4.9,2.0,virginica
124
+ 7.7,2.8,6.7,2.0,virginica
125
+ 6.3,2.7,4.9,1.8,virginica
126
+ 6.7,3.3,5.7,2.1,virginica
127
+ 7.2,3.2,6.0,1.8,virginica
128
+ 6.2,2.8,4.8,1.8,virginica
129
+ 6.1,3.0,4.9,1.8,virginica
130
+ 6.4,2.8,5.6,2.1,virginica
131
+ 7.2,3.0,5.8,1.6,virginica
132
+ 7.4,2.8,6.1,1.9,virginica
133
+ 7.9,3.8,6.4,2.0,virginica
134
+ 6.4,2.8,5.6,2.2,virginica
135
+ 6.3,2.8,5.1,1.5,virginica
136
+ 6.1,2.6,5.6,1.4,virginica
137
+ 7.7,3.0,6.1,2.3,virginica
138
+ 6.3,3.4,5.6,2.4,virginica
139
+ 6.4,3.1,5.5,1.8,virginica
140
+ 6.0,3.0,4.8,1.8,virginica
141
+ 6.9,3.1,5.4,2.1,virginica
142
+ 6.7,3.1,5.6,2.4,virginica
143
+ 6.9,3.1,5.1,2.3,virginica
144
+ 5.8,2.7,5.1,1.9,virginica
145
+ 6.8,3.2,5.9,2.3,virginica
146
+ 6.7,3.3,5.7,2.5,virginica
147
+ 6.7,3.0,5.2,2.3,virginica
148
+ 6.3,2.5,5.0,1.9,virginica
149
+ 6.5,3.0,5.2,2.0,virginica
150
+ 6.2,3.4,5.4,2.3,virginica
151
+ 5.9,3.0,5.1,1.8,virginica
data/model.pkl ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:e37d94112cf51c382e9639ba7d9aab490170f2aa684455aa589c0c097dbdb929
3
+ size 912
images/feature01.png ADDED
images/setosa.jpg ADDED
images/setosa.webp ADDED
images/versicolor.jpg ADDED
images/versicolor.webp ADDED
images/virginica.jpg ADDED
images/virginica.webp ADDED
images//344/270/213/350/275/275 (1).jpeg ADDED
pages/001 data_intro.py ADDED
@@ -0,0 +1,33 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ### Data Exploration
2
+ import simplestart as ss
3
+ import pandas as pd
4
+
5
+ ss.md('''
6
+ ## Iris Dataset
7
+ The dataset contains 150 samples divided into 3 classes: Setosa, Versicolor, and Virginica. Each class has 50 samples, and each sample includes 4 attributes.
8
+ ''')
9
+
10
+ ss.space()
11
+
12
+ title = "Table 1. Iris Dataset"
13
+ subtitle = "sepal_length: length of the sepal, sepal_width: width of the sepal, petal_length: length of the petal, petal_width: width of the petal"
14
+ # Set global float display precision
15
+ pd.options.display.float_format = '{:.2f}'.format
16
+ df = pd.read_csv("./data/iris.csv")
17
+
18
+ ss.table(df, index=True, title=title, subtitle=subtitle, width=400)
19
+
20
+ ss.table(df.describe(), index=True)
21
+
22
+ ss.md("---")
23
+ # Simulated Data
24
+ import numpy as np
25
+ # Set random seed for reproducibility
26
+ np.random.seed(0)
27
+
28
+ num_rows = 10000
29
+ data = {
30
+ 'Column1': np.random.randint(0, 100, size=num_rows), # Random integers
31
+ 'Column2': np.random.random(size=num_rows), # Random floats
32
+ 'Column3': np.random.choice(['A', 'B', 'C', 'D'], size=num_rows), # Randomly chosen categories
33
+ }
pages/002 data_feature.py ADDED
@@ -0,0 +1,56 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ### Feature Analysis
2
+
3
+ import simplestart as ss
4
+ import pandas as pd
5
+
6
+ ss.md('''
7
+ ## Feature Analysis
8
+ ''')
9
+
10
+ ss.space()
11
+
12
+ ss.md("#### 1. Scatter Matrix of Features")
13
+ ss.space()
14
+ ss.image("./images/feature01.png", width=600, height=500)
15
+
16
+ ss.space()
17
+
18
+ ss.md('''
19
+ This image is from:
20
+ [VuNus 【Basics of Machine Learning】1.7 Iris Flower Classification](https://blog.csdn.net/qq_47809408/article/details/124632290)
21
+ ''')
22
+
23
+ ss.space()
24
+ ss.md("#### 2. Feature Exploration")
25
+ import pandas as pd
26
+ from bokeh.plotting import figure, show
27
+ from bokeh.models import ColumnDataSource
28
+ from bokeh.transform import factor_cmap
29
+ from bokeh.embed import file_html
30
+ from bokeh.resources import CDN
31
+ from bokeh.palettes import Category10
32
+
33
+ # Load dataset
34
+ data = pd.read_csv("./data/iris.csv")
35
+
36
+ # Create Bokeh chart
37
+ p = figure(title="Iris Dataset Scatter Plot", x_axis_label='Petal Length (cm)', y_axis_label='Petal Width (cm)',
38
+ tools="pan,wheel_zoom,box_zoom,reset,hover,save", width=800, height=600)
39
+
40
+ # Create data source
41
+ source = ColumnDataSource(data)
42
+
43
+ # Set color mapping for species column
44
+ species_list = data['species'].unique().tolist()
45
+ p.circle(x='petal_length', y='petal_width', source=source, size=10,
46
+ color=factor_cmap('species', palette=Category10[3], factors=species_list), legend_field='species')
47
+
48
+ # Configure legend
49
+ p.legend.title = "Species"
50
+ p.legend.location = "top_left"
51
+
52
+ # Convert Bokeh chart to HTML and display
53
+ html_output = file_html(p, CDN, "Iris Dataset Scatter Plot")
54
+ # show(p)
55
+
56
+ ss.htmlview(html_output)
pages/003 model train.py ADDED
@@ -0,0 +1,124 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ### Model Training
2
+
3
+ import simplestart as ss
4
+
5
+ from sklearn import datasets
6
+ from sklearn.neighbors import KNeighborsClassifier
7
+ from sklearn.model_selection import train_test_split
8
+ from sklearn.metrics import accuracy_score
9
+
10
+
11
+ ss.md('''
12
+ ## Model Training
13
+ ''')
14
+
15
+ # Load data and split samples
16
+ data = datasets.load_iris()
17
+ X = data.data
18
+ y = data.target
19
+
20
+ X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=0)
21
+
22
+ # Page session variables
23
+ ss.session["acc"] = ""
24
+ ss.session["code"] = 0
25
+
26
+ # Training function
27
+ def train(event):
28
+ clf = KNeighborsClassifier(n_neighbors=3)
29
+ clf.fit(X_train, y_train)
30
+
31
+ y_pred = clf.predict(X_test)
32
+
33
+ acc = accuracy_score(y_test, y_pred)
34
+ acc = round(acc, 2)
35
+
36
+ ss.session["acc"] = acc # Assign the result to page session variable, the corresponding page display will respond automatically
37
+
38
+ ss.md('''
39
+ #### Main Steps of Model Training:
40
+ First, the Iris dataset is loaded (including features and labels), and this data is split into training and testing sets, with 80% used for training and 20% for testing. Then, a training function is defined that uses the K-Nearest Neighbors (KNN) classifier to train the model, evaluate the predictive accuracy, and save the result in a page session variable for display on the webpage.
41
+ ###
42
+ On the webpage, there is a training button. When the user clicks this button, the training function is triggered, the model is trained in the background, and the predictive accuracy on the test set is calculated. Once training is complete, the accuracy result is updated on the page and displayed to the user in the format "Accuracy = @acc," where @acc is the predictive accuracy value calculated during training.
43
+ ###
44
+ The speed of training and testing is particularly fast because the Iris dataset is very small, containing only 150 samples and 4 features. Additionally, K-Nearest Neighbors (KNN) is a simple and efficient algorithm, especially effective on small datasets, thus the training and testing processes are completed quickly.
45
+ ###
46
+ ---
47
+ ''')
48
+ ss.write(f'Test set predictive accuracy Accuracy =', "@acc")
49
+
50
+ ss.button("Train", onclick=train)
51
+ # UI
52
+
53
+ ss.md("---")
54
+
55
+ def conditioner(event):
56
+ return ss.session["code"] == 1
57
+
58
+ def checkcode(event):
59
+ ss.session["code"] = 1
60
+
61
+ def hidecode(event):
62
+ ss.session["code"] = 0
63
+
64
+ ss.button("View Code", onclick=checkcode)
65
+ ss.button("Hide Code", onclick=hidecode)
66
+
67
+ with ss.when(conditioner):
68
+ ss.md('''
69
+ ```python
70
+ import simplestart as ss
71
+
72
+ from sklearn import datasets
73
+ from sklearn.neighbors import KNeighborsClassifier
74
+ from sklearn.model_selection import train_test_split
75
+ from sklearn.metrics import accuracy_score
76
+
77
+ # Load data and split samples
78
+ data = datasets.load_iris()
79
+ X = data.data
80
+ y = data.target
81
+ ss.write(X.shape, y.shape)
82
+
83
+ X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=0)
84
+
85
+ # Page session variable
86
+ ss.session["acc"] = ""
87
+
88
+ # Training function
89
+ def train(event):
90
+ clf = KNeighborsClassifier(n_neighbors=3)
91
+ clf.fit(X_train, y_train)
92
+
93
+ y_pred = clf.predict(X_test)
94
+
95
+ acc = accuracy_score(y_test, y_pred)
96
+ acc = round(acc, 2)
97
+
98
+ ss.session["acc"] = acc # Assign the result to page session variable, the corresponding page display will respond automatically
99
+
100
+ # Display the model's accuracy on the test set
101
+ ss.write(f'Test set predictive accuracy Accuracy =', "\@acc")
102
+
103
+ ss.button("Train", onclick=train)
104
+
105
+ ```
106
+ ''')
107
+
108
+
109
+ ss.md("---")
110
+
111
+
112
+ ss.md('''
113
+ ::: tip
114
+ ### Advantages of KNN:
115
+ Simple, easy to understand, easy to implement, requires no parameter estimation, no training required;
116
+ Suitable for classifying rare events;
117
+ Particularly suitable for multi-class problems (Multi-label, objects with multiple category labels).
118
+ :::
119
+ ''')
120
+
121
+ ss.md('''
122
+ For more information on KNN, please refer to
123
+ [KNN Classification Algorithm Introduction, Classifying Iris Dataset with KNN(iris)](https://blog.csdn.net/weixin_51756038/article/details/130096706)
124
+ ''')
pages/004 model_sample.py ADDED
@@ -0,0 +1,59 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ### Prediction Instance
2
+ # The original source code:
3
+ # https://github.com/AzeemWaqarRao/Streamlit-Iris-Classification-App
4
+ import simplestart as ss
5
+
6
+ from sklearn.datasets import load_iris
7
+ import pandas as pd
8
+ import pickle
9
+ import numpy as np
10
+
11
+ # Data and API
12
+ species = ['setosa', 'versicolor', 'virginica']
13
+ image = ['./images/setosa.jpg', './images/versicolor.jpg', './images/virginica.jpg']
14
+ with open('./data/model.pkl', 'rb') as f:
15
+ model = pickle.load(f)
16
+
17
+ def slidechange(event):
18
+ predict()
19
+
20
+ def predict():
21
+ # Getting prediction from model
22
+ inp = np.array([sepal_length.value, sepal_width.value, petal_length.value, petal_width.value])
23
+ inp = np.expand_dims(inp, axis=0)
24
+ prediction = model.predict_proba(inp)
25
+
26
+ ## Show results when prediction is done
27
+ if True:
28
+ df = pd.DataFrame(prediction, index=['result'], columns=species).round(4)
29
+ table_result.data = df
30
+ ss.session["result"] = species[np.argmax(prediction)]
31
+ image_flower.image = image[np.argmax(prediction)]
32
+
33
+ # UI
34
+ with ss.sidebar():
35
+ ss.write("### Inputs")
36
+
37
+ sepal_length = ss.slider("sepal length (cm)", 4.3, 7.9, 5.0, onchange=slidechange)
38
+ sepal_width = ss.slider("sepal width (cm)", 2.0, 4.4, 3.6, onchange=slidechange)
39
+ petal_length = ss.slider("petal length (cm)", 1.0, 6.9, 1.4, onchange=slidechange)
40
+ petal_width = ss.slider("petal width (cm)", 0.1, 2.5, 0.2, onchange=slidechange)
41
+
42
+ ss.write("## Iris Flower Classification Prediction")
43
+ ss.write("Change the sepal and petal length and width to predict among the 3 possible categories.")
44
+
45
+ ss.write('''
46
+ # Results
47
+ Following is the probability of each class
48
+ ''')
49
+
50
+ ss.space()
51
+
52
+ table_result = ss.table(show_border=True)
53
+ ss.write("**This flower belongs to the @result" + " class**")
54
+
55
+ ss.space()
56
+
57
+ image_flower = ss.image(image[0])
58
+
59
+ predict()