### Feature Analysis import simplestart as ss import pandas as pd ss.md(''' ## Feature Analysis ''') ss.space() ss.md("#### 1. Scatter Matrix of Features") ss.space() ss.image("./images/feature01.png", width=600, height=500) ss.space() ss.md(''' This image is from: [VuNus 【Basics of Machine Learning】1.7 Iris Flower Classification](https://blog.csdn.net/qq_47809408/article/details/124632290) ''') ss.space() ss.md("#### 2. Feature Exploration") import pandas as pd from bokeh.plotting import figure, show from bokeh.models import ColumnDataSource from bokeh.transform import factor_cmap from bokeh.embed import file_html from bokeh.resources import CDN from bokeh.palettes import Category10 # Load dataset data = pd.read_csv("./data/iris.csv") # Create Bokeh chart p = figure(title="Iris Dataset Scatter Plot", x_axis_label='Petal Length (cm)', y_axis_label='Petal Width (cm)', tools="pan,wheel_zoom,box_zoom,reset,hover,save", width=800, height=600) # Create data source source = ColumnDataSource(data) # Set color mapping for species column species_list = data['species'].unique().tolist() p.circle(x='petal_length', y='petal_width', source=source, size=10, color=factor_cmap('species', palette=Category10[3], factors=species_list), legend_field='species') # Configure legend p.legend.title = "Species" p.legend.location = "top_left" # Convert Bokeh chart to HTML and display html_output = file_html(p, CDN, "Iris Dataset Scatter Plot") # show(p) ss.htmlview(html_output)