### Data Exploration import simplestart as ss import pandas as pd ss.md(''' ## Iris Dataset The dataset contains 150 samples divided into 3 classes: Setosa, Versicolor, and Virginica. Each class has 50 samples, and each sample includes 4 attributes. ''') ss.space() title = "Table 1. Iris Dataset" subtitle = "sepal_length: length of the sepal, sepal_width: width of the sepal, petal_length: length of the petal, petal_width: width of the petal" # Set global float display precision pd.options.display.float_format = '{:.2f}'.format df = pd.read_csv("./data/iris.csv") ss.table(df, index=True, title=title, subtitle=subtitle, width=400) ss.table(df.describe(), index=True) ss.md("---") # Simulated Data import numpy as np # Set random seed for reproducibility np.random.seed(0) num_rows = 10000 data = { 'Column1': np.random.randint(0, 100, size=num_rows), # Random integers 'Column2': np.random.random(size=num_rows), # Random floats 'Column3': np.random.choice(['A', 'B', 'C', 'D'], size=num_rows), # Randomly chosen categories }