### Prediction Instance # The original source code: # https://github.com/AzeemWaqarRao/Streamlit-Iris-Classification-App import simplestart as ss from sklearn.datasets import load_iris import pandas as pd import pickle import numpy as np # Data and API species = ['setosa', 'versicolor', 'virginica'] image = ['./images/setosa.jpg', './images/versicolor.jpg', './images/virginica.jpg'] with open('./data/model.pkl', 'rb') as f: model = pickle.load(f) def slidechange(event): predict() def predict(): # Getting prediction from model inp = np.array([sepal_length.value, sepal_width.value, petal_length.value, petal_width.value]) inp = np.expand_dims(inp, axis=0) prediction = model.predict_proba(inp) ## Show results when prediction is done if True: df = pd.DataFrame(prediction, index=['result'], columns=species).round(4) table_result.data = df ss.session["result"] = species[np.argmax(prediction)] image_flower.image = image[np.argmax(prediction)] # UI with ss.sidebar(): ss.write("### Inputs") sepal_length = ss.slider("sepal length (cm)", 4.3, 7.9, 5.0, onchange=slidechange) sepal_width = ss.slider("sepal width (cm)", 2.0, 4.4, 3.6, onchange=slidechange) petal_length = ss.slider("petal length (cm)", 1.0, 6.9, 1.4, onchange=slidechange) petal_width = ss.slider("petal width (cm)", 0.1, 2.5, 0.2, onchange=slidechange) ss.write("## Iris Flower Classification Prediction") ss.write("Change the sepal and petal length and width to predict among the 3 possible categories.") ss.write(''' # Results Following is the probability of each class ''') ss.space() table_result = ss.table(show_border=True) ss.write("**This flower belongs to the @result" + " class**") ss.space() image_flower = ss.image(image[0]) predict()