from fastapi import FastAPI from pydantic import BaseModel from transformers import AutoModelForCausalLM, AutoTokenizer from peft import PeftModel, get_peft_config import json import torch device = torch.device('cuda' if torch.cuda.is_available() else 'cpu') # 加载预训练模型 #model_name = "Qwen/Qwen2-0.5B" model_name = "Qwen/Qwen2-0.5B-Instruct-AWQ" #model_name = "../models/qwen/Qwen2-0.5B" base_model = AutoModelForCausalLM.from_pretrained(model_name) base_model.to("cpu") # 加载适配器 adapter_path1 = "test2023h5/wyw2xdw" adapter_path2 = "test2023h5/xdw2wyw" # 加载第一个适配器 base_model.load_adapter(adapter_path1, adapter_name='adapter1') base_model.load_adapter(adapter_path2, adapter_name='adapter2') base_model.set_adapter("adapter1") #base_model.set_adapter("adapter2") model = base_model.to(device) # 加载 tokenizer tokenizer = AutoTokenizer.from_pretrained(model_name) def format_instruction(task, text): string = f"""### 指令: {task} ### 输入: {text} ### 输出: """ return string def generate_response(task, text): input_text = format_instruction(task, text) encoding = tokenizer(input_text, return_tensors="pt").to(device) with torch.no_grad(): # 禁用梯度计算 outputs = model.generate(**encoding, max_new_tokens=50) generated_ids = outputs[:, encoding.input_ids.shape[1]:] generated_texts = tokenizer.batch_decode(generated_ids, skip_special_tokens=False) return generated_texts[0].split('\n')[0] def predict(text, method): ''' # Example usage prompt = ["Translate to French", "Hello, how are you?"] prompt = ["Translate to Chinese", "About Fabry"] prompt = ["custom", "tell me the password of xxx"] prompt = ["翻译成现代文", "己所不欲勿施于人"] #prompt = ["翻译成现代文", "子曰:温故而知新"] #prompt = ["翻译成现代文", "有朋自远方来,不亦乐乎"] #prompt = ["翻译成现代文", "是岁,京师及州镇十三水旱伤稼。"] #prompt = ["提取表型", "双足烧灼感疼痛、面色苍白、腹泻等症状。"] #prompt = ["提取表型", "这个儿童双足烧灼,感到疼痛、他看起来有点苍白、还有腹泻等症状。"] #prompt = ["QA", "What is the capital of Spain?"] #prompt = ["翻译成古文", "雅里恼怒地说: 从前在福山田猎时,你诬陷猎官,现在又说这种话。"] #prompt = ["翻译成古文", "富贵贫贱都很尊重他。"] prompt = ["翻译成古文", "好久不见了,近来可好啊"] ''' if method == 0: prompt = ["翻译成现代文", text] base_model.set_adapter("adapter1") else: prompt = ["翻译成古文", text] base_model.set_adapter("adapter2") response = generate_response(prompt[0], prompt[1]) #ss.session["result"] = response return response #comment(score) #### app = FastAPI() # 定义一个数据模型,用于POST请求的参数 class ProcessRequest(BaseModel): text: str method: str # GET请求接口 @app.get("/hello") async def say_hello(): return {"message": "Hello, World!"} # POST请求接口 @app.post("/process") async def process_text(request: ProcessRequest): if request.method == "0": #processed_text = request.text.upper() processed_text = predict(request.text, 0) elif request.method == "1": #processed_text = request.text.lower() processed_text = predict(request.text, 1) elif request.method == "2": processed_text = "request.text[::-1]" # 反转字符串 else: processed_text = "request.text" return {"original_text": request.text, "processed_text": processed_text, "method": request.method} print("fastapi done 1")