testmail-gmail commited on
Commit
004a7b2
·
1 Parent(s): d62afa0

making output as text

Browse files
Files changed (1) hide show
  1. app.py +6 -6
app.py CHANGED
@@ -153,19 +153,19 @@ def detect_Custom(img,model,boundedImage):
153
 
154
  images = [keras_ocr.tools.read(img) for img in [boundedImage]]
155
  prediction_groups = pipeline.recognize(images)
156
- plt.figure(figsize = (10,20))
 
 
157
 
158
- fig, ax = plt.subplots(figsize=(10, 20))
159
- #keras_ocr.tools.drawAnnotations(image=images[0], predictions=prediction_groups[0], ax=ax)
160
  if save_txt or save_img:
161
  s = f"\n{len(list(save_dir.glob('labels/*.txt')))} labels saved to {save_dir / 'labels'}" if save_txt else ''
162
 
163
  print(f'Done. ({time.time() - t0:.3f}s)')
164
 
165
- return Image.fromarray(im0[:,:,::-1]), keras_ocr.tools.drawAnnotations(image=images[0], predictions=prediction_groups[0], ax=ax)
166
 
167
 
168
-
169
  Custom_description="<center>Custom Training Performed on Colab <a href='https://colab.research.google.com/github/roboflow-ai/notebooks/blob/main/notebooks/train-yolov7-object-detection-on-custom-data.ipynb?authuser=2#scrollTo=1iqOPKjr22mL' style='text-decoration: underline' target='_blank'>Link</a> </center><br> <center>Model trained with test dataset of 'aadhar-card', 'credit-card','prescription' and 'passport' </center>"
170
 
171
  Footer = (
@@ -183,4 +183,4 @@ examples1=[["Image1.jpeg", "Yolo_v7_Custom_trained_By_Owais"],["Image2.jpeg", "Y
183
  Top_Title="<center>Intelligent Image to Text - IIT </center></a>"
184
 
185
  css = ".output-image, .input-image, .image-preview {height: 300px !important}"
186
- gr.Interface(detect_Custom,[gr.Image(type="pil"),gr.Dropdown(default="Yolo_v7_Custom_trained_By_Owais",choices=["Yolo_v7_Custom_trained_By_Owais","yolov7","yolov7-e6"]),gr.Image(type="filepath")],[gr.Image(type="pil"),gr.Image(type="pil")],css=css,title=Top_Title,examples=examples1,description=Custom_description,article=Footer,cache_examples=False).launch()
 
153
 
154
  images = [keras_ocr.tools.read(img) for img in [boundedImage]]
155
  prediction_groups = pipeline.recognize(images)
156
+ first=prediction_groups[0]
157
+ for text,box in first:
158
+ output_text += ' '+ text
159
 
 
 
160
  if save_txt or save_img:
161
  s = f"\n{len(list(save_dir.glob('labels/*.txt')))} labels saved to {save_dir / 'labels'}" if save_txt else ''
162
 
163
  print(f'Done. ({time.time() - t0:.3f}s)')
164
 
165
+ return Image.fromarray(im0[:,:,::-1]), output_text
166
 
167
 
168
+ output = gr.Textbox(label="Output",elem_id="opbox")
169
  Custom_description="<center>Custom Training Performed on Colab <a href='https://colab.research.google.com/github/roboflow-ai/notebooks/blob/main/notebooks/train-yolov7-object-detection-on-custom-data.ipynb?authuser=2#scrollTo=1iqOPKjr22mL' style='text-decoration: underline' target='_blank'>Link</a> </center><br> <center>Model trained with test dataset of 'aadhar-card', 'credit-card','prescription' and 'passport' </center>"
170
 
171
  Footer = (
 
183
  Top_Title="<center>Intelligent Image to Text - IIT </center></a>"
184
 
185
  css = ".output-image, .input-image, .image-preview {height: 300px !important}"
186
+ gr.Interface(detect_Custom,[gr.Image(type="pil"),gr.Dropdown(default="Yolo_v7_Custom_trained_By_Owais",choices=["Yolo_v7_Custom_trained_By_Owais","yolov7","yolov7-e6"]),gr.Image(type="filepath")],[gr.Image(type="pil"),output],css=css,title=Top_Title,examples=examples1,description=Custom_description,article=Footer,cache_examples=False).launch()