Spaces:
Runtime error
Runtime error
Commit
·
6f506cf
1
Parent(s):
d712bb9
Adding passport_MRZ weight
Browse files
app.py
CHANGED
@@ -14,6 +14,8 @@ import keras_ocr
|
|
14 |
import matplotlib.pyplot as plt
|
15 |
from numpy import asarray
|
16 |
import pybboxes as pbx
|
|
|
|
|
17 |
|
18 |
|
19 |
from utils.datasets import LoadStreams, LoadImages
|
@@ -25,8 +27,8 @@ os.system("wget https://github.com/WongKinYiu/yolov7/releases/download/v0.1/yolo
|
|
25 |
os.system("wget https://github.com/WongKinYiu/yolov7/releases/download/v0.1/yolov7-e6.pt")
|
26 |
pipeline = keras_ocr.pipeline.Pipeline()
|
27 |
|
28 |
-
def detect_Custom(img
|
29 |
-
model='
|
30 |
parser = argparse.ArgumentParser()
|
31 |
parser.add_argument('--weights', nargs='+', type=str, default=model+".pt", help='model.pt path(s)')
|
32 |
parser.add_argument('--source', type=str, default='Inference/', help='source')
|
@@ -130,10 +132,19 @@ def detect_Custom(img,boundedImage):
|
|
130 |
|
131 |
if save_img or view_img:
|
132 |
label = f'{names[int(cls)]} {conf:.2f}'
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
133 |
plot_one_box(xyxy, im0, label=label, color=colors[int(cls)], line_thickness=3)
|
134 |
W, H = 300, 300
|
135 |
box_voc = pbx.convert_bbox(xyxy, from_type="yolo", to_type="voc", image_size=(W,H))
|
136 |
-
|
137 |
if view_img:
|
138 |
cv2.imshow(str(p), im0)
|
139 |
cv2.waitKey(1)
|
@@ -157,11 +168,18 @@ def detect_Custom(img,boundedImage):
|
|
157 |
vid_writer.write(im0)
|
158 |
|
159 |
output_text = ''
|
160 |
-
|
161 |
-
|
162 |
-
|
163 |
-
|
164 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
165 |
|
166 |
if save_txt or save_img:
|
167 |
s = f"\n{len(list(save_dir.glob('labels/*.txt')))} labels saved to {save_dir / 'labels'}" if save_txt else ''
|
@@ -189,4 +207,4 @@ examples1=[["Image1.jpeg", "Yolo_v7_Custom_trained_By_Owais"],["Image2.jpeg", "Y
|
|
189 |
Top_Title="<center>Intelligent Image to Text - IIT </center></a>"
|
190 |
|
191 |
css = ".output-image, .input-image, .image-preview {height: 300px !important}"
|
192 |
-
gr.Interface(detect_Custom,[gr.Image(type="pil")
|
|
|
14 |
import matplotlib.pyplot as plt
|
15 |
from numpy import asarray
|
16 |
import pybboxes as pbx
|
17 |
+
import pytesseract
|
18 |
+
from datetime import date
|
19 |
|
20 |
|
21 |
from utils.datasets import LoadStreams, LoadImages
|
|
|
27 |
os.system("wget https://github.com/WongKinYiu/yolov7/releases/download/v0.1/yolov7-e6.pt")
|
28 |
pipeline = keras_ocr.pipeline.Pipeline()
|
29 |
|
30 |
+
def detect_Custom(img):
|
31 |
+
model='passport_mrz' # Naming Convention for yolov7 See output file of https://www.kaggle.com/code/owaiskhan9654/training-yolov7-on-kaggle-on-custom-dataset/data
|
32 |
parser = argparse.ArgumentParser()
|
33 |
parser.add_argument('--weights', nargs='+', type=str, default=model+".pt", help='model.pt path(s)')
|
34 |
parser.add_argument('--source', type=str, default='Inference/', help='source')
|
|
|
132 |
|
133 |
if save_img or view_img:
|
134 |
label = f'{names[int(cls)]} {conf:.2f}'
|
135 |
+
if(cls == 1):
|
136 |
+
x1 = int(xyxy[0].item())
|
137 |
+
y1 = int(xyxy[1].item())
|
138 |
+
x2 = int(xyxy[2].item())
|
139 |
+
y2 = int(xyxy[3].item())
|
140 |
+
|
141 |
+
orig_img = im0
|
142 |
+
crop_img = im0[y1:y2, x1:x2]
|
143 |
+
cv2.imwrite('MRZ_1.png', crop_img)
|
144 |
plot_one_box(xyxy, im0, label=label, color=colors[int(cls)], line_thickness=3)
|
145 |
W, H = 300, 300
|
146 |
box_voc = pbx.convert_bbox(xyxy, from_type="yolo", to_type="voc", image_size=(W,H))
|
147 |
+
|
148 |
if view_img:
|
149 |
cv2.imshow(str(p), im0)
|
150 |
cv2.waitKey(1)
|
|
|
168 |
vid_writer.write(im0)
|
169 |
|
170 |
output_text = ''
|
171 |
+
text = pytesseract.image_to_string(Image.open('MRZ_1.png'))
|
172 |
+
text = text.replace(" ", "")
|
173 |
+
text=text[22:28]
|
174 |
+
today = date.today()
|
175 |
+
s = today.strftime('%Y%m%d')[2:]
|
176 |
+
if(text > s):
|
177 |
+
output_text = 'This is a Valid Passport'
|
178 |
+
#images = [keras_ocr.tools.read(img) for img in [boundedImage]]
|
179 |
+
#prediction_groups = pipeline.recognize(images)
|
180 |
+
#first=prediction_groups[0]
|
181 |
+
#for text,box in first:
|
182 |
+
#output_text += ' '+ text
|
183 |
|
184 |
if save_txt or save_img:
|
185 |
s = f"\n{len(list(save_dir.glob('labels/*.txt')))} labels saved to {save_dir / 'labels'}" if save_txt else ''
|
|
|
207 |
Top_Title="<center>Intelligent Image to Text - IIT </center></a>"
|
208 |
|
209 |
css = ".output-image, .input-image, .image-preview {height: 300px !important}"
|
210 |
+
gr.Interface(detect_Custom,[gr.Image(type="pil")],[gr.Image(type="pil"),output],css=css,title=Top_Title,examples=examples1,description=Custom_description,article=Footer,cache_examples=False).launch()
|