Spaces:
Runtime error
Runtime error
File size: 15,053 Bytes
0c87db7 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 |
import functools
import time
import inspect
import collections
import types
import itertools
import warnings
import setuptools.extern.more_itertools
from typing import Callable, TypeVar
CallableT = TypeVar("CallableT", bound=Callable[..., object])
def compose(*funcs):
"""
Compose any number of unary functions into a single unary function.
>>> import textwrap
>>> expected = str.strip(textwrap.dedent(compose.__doc__))
>>> strip_and_dedent = compose(str.strip, textwrap.dedent)
>>> strip_and_dedent(compose.__doc__) == expected
True
Compose also allows the innermost function to take arbitrary arguments.
>>> round_three = lambda x: round(x, ndigits=3)
>>> f = compose(round_three, int.__truediv__)
>>> [f(3*x, x+1) for x in range(1,10)]
[1.5, 2.0, 2.25, 2.4, 2.5, 2.571, 2.625, 2.667, 2.7]
"""
def compose_two(f1, f2):
return lambda *args, **kwargs: f1(f2(*args, **kwargs))
return functools.reduce(compose_two, funcs)
def method_caller(method_name, *args, **kwargs):
"""
Return a function that will call a named method on the
target object with optional positional and keyword
arguments.
>>> lower = method_caller('lower')
>>> lower('MyString')
'mystring'
"""
def call_method(target):
func = getattr(target, method_name)
return func(*args, **kwargs)
return call_method
def once(func):
"""
Decorate func so it's only ever called the first time.
This decorator can ensure that an expensive or non-idempotent function
will not be expensive on subsequent calls and is idempotent.
>>> add_three = once(lambda a: a+3)
>>> add_three(3)
6
>>> add_three(9)
6
>>> add_three('12')
6
To reset the stored value, simply clear the property ``saved_result``.
>>> del add_three.saved_result
>>> add_three(9)
12
>>> add_three(8)
12
Or invoke 'reset()' on it.
>>> add_three.reset()
>>> add_three(-3)
0
>>> add_three(0)
0
"""
@functools.wraps(func)
def wrapper(*args, **kwargs):
if not hasattr(wrapper, 'saved_result'):
wrapper.saved_result = func(*args, **kwargs)
return wrapper.saved_result
wrapper.reset = lambda: vars(wrapper).__delitem__('saved_result')
return wrapper
def method_cache(
method: CallableT,
cache_wrapper: Callable[
[CallableT], CallableT
] = functools.lru_cache(), # type: ignore[assignment]
) -> CallableT:
"""
Wrap lru_cache to support storing the cache data in the object instances.
Abstracts the common paradigm where the method explicitly saves an
underscore-prefixed protected property on first call and returns that
subsequently.
>>> class MyClass:
... calls = 0
...
... @method_cache
... def method(self, value):
... self.calls += 1
... return value
>>> a = MyClass()
>>> a.method(3)
3
>>> for x in range(75):
... res = a.method(x)
>>> a.calls
75
Note that the apparent behavior will be exactly like that of lru_cache
except that the cache is stored on each instance, so values in one
instance will not flush values from another, and when an instance is
deleted, so are the cached values for that instance.
>>> b = MyClass()
>>> for x in range(35):
... res = b.method(x)
>>> b.calls
35
>>> a.method(0)
0
>>> a.calls
75
Note that if method had been decorated with ``functools.lru_cache()``,
a.calls would have been 76 (due to the cached value of 0 having been
flushed by the 'b' instance).
Clear the cache with ``.cache_clear()``
>>> a.method.cache_clear()
Same for a method that hasn't yet been called.
>>> c = MyClass()
>>> c.method.cache_clear()
Another cache wrapper may be supplied:
>>> cache = functools.lru_cache(maxsize=2)
>>> MyClass.method2 = method_cache(lambda self: 3, cache_wrapper=cache)
>>> a = MyClass()
>>> a.method2()
3
Caution - do not subsequently wrap the method with another decorator, such
as ``@property``, which changes the semantics of the function.
See also
http://code.activestate.com/recipes/577452-a-memoize-decorator-for-instance-methods/
for another implementation and additional justification.
"""
def wrapper(self: object, *args: object, **kwargs: object) -> object:
# it's the first call, replace the method with a cached, bound method
bound_method: CallableT = types.MethodType( # type: ignore[assignment]
method, self
)
cached_method = cache_wrapper(bound_method)
setattr(self, method.__name__, cached_method)
return cached_method(*args, **kwargs)
# Support cache clear even before cache has been created.
wrapper.cache_clear = lambda: None # type: ignore[attr-defined]
return ( # type: ignore[return-value]
_special_method_cache(method, cache_wrapper) or wrapper
)
def _special_method_cache(method, cache_wrapper):
"""
Because Python treats special methods differently, it's not
possible to use instance attributes to implement the cached
methods.
Instead, install the wrapper method under a different name
and return a simple proxy to that wrapper.
https://github.com/jaraco/jaraco.functools/issues/5
"""
name = method.__name__
special_names = '__getattr__', '__getitem__'
if name not in special_names:
return
wrapper_name = '__cached' + name
def proxy(self, *args, **kwargs):
if wrapper_name not in vars(self):
bound = types.MethodType(method, self)
cache = cache_wrapper(bound)
setattr(self, wrapper_name, cache)
else:
cache = getattr(self, wrapper_name)
return cache(*args, **kwargs)
return proxy
def apply(transform):
"""
Decorate a function with a transform function that is
invoked on results returned from the decorated function.
>>> @apply(reversed)
... def get_numbers(start):
... "doc for get_numbers"
... return range(start, start+3)
>>> list(get_numbers(4))
[6, 5, 4]
>>> get_numbers.__doc__
'doc for get_numbers'
"""
def wrap(func):
return functools.wraps(func)(compose(transform, func))
return wrap
def result_invoke(action):
r"""
Decorate a function with an action function that is
invoked on the results returned from the decorated
function (for its side-effect), then return the original
result.
>>> @result_invoke(print)
... def add_two(a, b):
... return a + b
>>> x = add_two(2, 3)
5
>>> x
5
"""
def wrap(func):
@functools.wraps(func)
def wrapper(*args, **kwargs):
result = func(*args, **kwargs)
action(result)
return result
return wrapper
return wrap
def invoke(f, *args, **kwargs):
"""
Call a function for its side effect after initialization.
The benefit of using the decorator instead of simply invoking a function
after defining it is that it makes explicit the author's intent for the
function to be called immediately. Whereas if one simply calls the
function immediately, it's less obvious if that was intentional or
incidental. It also avoids repeating the name - the two actions, defining
the function and calling it immediately are modeled separately, but linked
by the decorator construct.
The benefit of having a function construct (opposed to just invoking some
behavior inline) is to serve as a scope in which the behavior occurs. It
avoids polluting the global namespace with local variables, provides an
anchor on which to attach documentation (docstring), keeps the behavior
logically separated (instead of conceptually separated or not separated at
all), and provides potential to re-use the behavior for testing or other
purposes.
This function is named as a pithy way to communicate, "call this function
primarily for its side effect", or "while defining this function, also
take it aside and call it". It exists because there's no Python construct
for "define and call" (nor should there be, as decorators serve this need
just fine). The behavior happens immediately and synchronously.
>>> @invoke
... def func(): print("called")
called
>>> func()
called
Use functools.partial to pass parameters to the initial call
>>> @functools.partial(invoke, name='bingo')
... def func(name): print("called with", name)
called with bingo
"""
f(*args, **kwargs)
return f
def call_aside(*args, **kwargs):
"""
Deprecated name for invoke.
"""
warnings.warn("call_aside is deprecated, use invoke", DeprecationWarning)
return invoke(*args, **kwargs)
class Throttler:
"""
Rate-limit a function (or other callable)
"""
def __init__(self, func, max_rate=float('Inf')):
if isinstance(func, Throttler):
func = func.func
self.func = func
self.max_rate = max_rate
self.reset()
def reset(self):
self.last_called = 0
def __call__(self, *args, **kwargs):
self._wait()
return self.func(*args, **kwargs)
def _wait(self):
"ensure at least 1/max_rate seconds from last call"
elapsed = time.time() - self.last_called
must_wait = 1 / self.max_rate - elapsed
time.sleep(max(0, must_wait))
self.last_called = time.time()
def __get__(self, obj, type=None):
return first_invoke(self._wait, functools.partial(self.func, obj))
def first_invoke(func1, func2):
"""
Return a function that when invoked will invoke func1 without
any parameters (for its side-effect) and then invoke func2
with whatever parameters were passed, returning its result.
"""
def wrapper(*args, **kwargs):
func1()
return func2(*args, **kwargs)
return wrapper
def retry_call(func, cleanup=lambda: None, retries=0, trap=()):
"""
Given a callable func, trap the indicated exceptions
for up to 'retries' times, invoking cleanup on the
exception. On the final attempt, allow any exceptions
to propagate.
"""
attempts = itertools.count() if retries == float('inf') else range(retries)
for attempt in attempts:
try:
return func()
except trap:
cleanup()
return func()
def retry(*r_args, **r_kwargs):
"""
Decorator wrapper for retry_call. Accepts arguments to retry_call
except func and then returns a decorator for the decorated function.
Ex:
>>> @retry(retries=3)
... def my_func(a, b):
... "this is my funk"
... print(a, b)
>>> my_func.__doc__
'this is my funk'
"""
def decorate(func):
@functools.wraps(func)
def wrapper(*f_args, **f_kwargs):
bound = functools.partial(func, *f_args, **f_kwargs)
return retry_call(bound, *r_args, **r_kwargs)
return wrapper
return decorate
def print_yielded(func):
"""
Convert a generator into a function that prints all yielded elements
>>> @print_yielded
... def x():
... yield 3; yield None
>>> x()
3
None
"""
print_all = functools.partial(map, print)
print_results = compose(more_itertools.consume, print_all, func)
return functools.wraps(func)(print_results)
def pass_none(func):
"""
Wrap func so it's not called if its first param is None
>>> print_text = pass_none(print)
>>> print_text('text')
text
>>> print_text(None)
"""
@functools.wraps(func)
def wrapper(param, *args, **kwargs):
if param is not None:
return func(param, *args, **kwargs)
return wrapper
def assign_params(func, namespace):
"""
Assign parameters from namespace where func solicits.
>>> def func(x, y=3):
... print(x, y)
>>> assigned = assign_params(func, dict(x=2, z=4))
>>> assigned()
2 3
The usual errors are raised if a function doesn't receive
its required parameters:
>>> assigned = assign_params(func, dict(y=3, z=4))
>>> assigned()
Traceback (most recent call last):
TypeError: func() ...argument...
It even works on methods:
>>> class Handler:
... def meth(self, arg):
... print(arg)
>>> assign_params(Handler().meth, dict(arg='crystal', foo='clear'))()
crystal
"""
sig = inspect.signature(func)
params = sig.parameters.keys()
call_ns = {k: namespace[k] for k in params if k in namespace}
return functools.partial(func, **call_ns)
def save_method_args(method):
"""
Wrap a method such that when it is called, the args and kwargs are
saved on the method.
>>> class MyClass:
... @save_method_args
... def method(self, a, b):
... print(a, b)
>>> my_ob = MyClass()
>>> my_ob.method(1, 2)
1 2
>>> my_ob._saved_method.args
(1, 2)
>>> my_ob._saved_method.kwargs
{}
>>> my_ob.method(a=3, b='foo')
3 foo
>>> my_ob._saved_method.args
()
>>> my_ob._saved_method.kwargs == dict(a=3, b='foo')
True
The arguments are stored on the instance, allowing for
different instance to save different args.
>>> your_ob = MyClass()
>>> your_ob.method({str('x'): 3}, b=[4])
{'x': 3} [4]
>>> your_ob._saved_method.args
({'x': 3},)
>>> my_ob._saved_method.args
()
"""
args_and_kwargs = collections.namedtuple('args_and_kwargs', 'args kwargs')
@functools.wraps(method)
def wrapper(self, *args, **kwargs):
attr_name = '_saved_' + method.__name__
attr = args_and_kwargs(args, kwargs)
setattr(self, attr_name, attr)
return method(self, *args, **kwargs)
return wrapper
def except_(*exceptions, replace=None, use=None):
"""
Replace the indicated exceptions, if raised, with the indicated
literal replacement or evaluated expression (if present).
>>> safe_int = except_(ValueError)(int)
>>> safe_int('five')
>>> safe_int('5')
5
Specify a literal replacement with ``replace``.
>>> safe_int_r = except_(ValueError, replace=0)(int)
>>> safe_int_r('five')
0
Provide an expression to ``use`` to pass through particular parameters.
>>> safe_int_pt = except_(ValueError, use='args[0]')(int)
>>> safe_int_pt('five')
'five'
"""
def decorate(func):
@functools.wraps(func)
def wrapper(*args, **kwargs):
try:
return func(*args, **kwargs)
except exceptions:
try:
return eval(use)
except TypeError:
return replace
return wrapper
return decorate
|