Spaces:
Runtime error
Runtime error
File size: 8,126 Bytes
3e8b723 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 |
# pip install -e git+https://github.com/CompVis/stable-diffusion.git@master
# pip install -e git+https://github.com/CompVis/taming-transformers.git@master#egg=taming-transformers
# convert_original_stable_diffusion_to_diffusers.py
# TODO
# grayscale
# log audio
# convert to huggingface / train huggingface
import os
import argparse
import torch
import torchvision
import numpy as np
from PIL import Image
import pytorch_lightning as pl
from omegaconf import OmegaConf
from datasets import load_dataset
from librosa.util import normalize
from ldm.util import instantiate_from_config
from pytorch_lightning.trainer import Trainer
from torch.utils.data import DataLoader, Dataset
from pytorch_lightning.callbacks import Callback, ModelCheckpoint
from audiodiffusion.mel import Mel
class AudioDiffusion(Dataset):
def __init__(self, model_id):
super().__init__()
self.hf_dataset = load_dataset(model_id)['train']
def __len__(self):
return len(self.hf_dataset)
def __getitem__(self, idx):
image = self.hf_dataset[idx]['image'].convert('RGB')
image = np.frombuffer(image.tobytes(), dtype="uint8").reshape(
(image.height, image.width, 3))
image = ((image / 255) * 2 - 1)
return {'image': image}
class AudioDiffusionDataModule(pl.LightningDataModule):
def __init__(self, model_id, batch_size):
super().__init__()
self.batch_size = batch_size
self.dataset = AudioDiffusion(model_id)
self.num_workers = 1
def train_dataloader(self):
return DataLoader(self.dataset,
batch_size=self.batch_size,
num_workers=self.num_workers)
# from https://github.com/CompVis/stable-diffusion/blob/main/main.py
class ImageLogger(Callback):
def __init__(self,
batch_frequency,
max_images,
clamp=True,
increase_log_steps=True,
rescale=True,
disabled=False,
log_on_batch_idx=False,
log_first_step=False,
log_images_kwargs=None,
resolution=256,
hop_length=512):
super().__init__()
self.mel = Mel(x_res=resolution,
y_res=resolution,
hop_length=hop_length)
self.rescale = rescale
self.batch_freq = batch_frequency
self.max_images = max_images
self.logger_log_images = {
pl.loggers.TensorBoardLogger: self._testtube,
}
self.log_steps = [
2**n for n in range(int(np.log2(self.batch_freq)) + 1)
]
if not increase_log_steps:
self.log_steps = [self.batch_freq]
self.clamp = clamp
self.disabled = disabled
self.log_on_batch_idx = log_on_batch_idx
self.log_images_kwargs = log_images_kwargs if log_images_kwargs else {}
self.log_first_step = log_first_step
#@rank_zero_only
def _testtube(self, pl_module, images, batch_idx, split):
for k in images:
images_ = (images[k] + 1.0) / 2.0 # -1,1 -> 0,1; c,h,w
grid = torchvision.utils.make_grid(images_)
tag = f"{split}/{k}"
pl_module.logger.experiment.add_image(
tag, grid, global_step=pl_module.global_step)
for _, image in enumerate(images_):
image = (images_.numpy() *
255).round().astype("uint8").transpose(0, 2, 3, 1)
audio = self.mel.image_to_audio(
Image.fromarray(image[0], mode='RGB').convert('L'))
pl_module.logger.experiment.add_audio(
tag + f"/{_}",
normalize(audio),
global_step=pl_module.global_step,
sample_rate=self.mel.get_sample_rate())
#@rank_zero_only
def log_local(self, save_dir, split, images, global_step, current_epoch,
batch_idx):
root = os.path.join(save_dir, "images", split)
for k in images:
grid = torchvision.utils.make_grid(images[k], nrow=4)
if self.rescale:
grid = (grid + 1.0) / 2.0 # -1,1 -> 0,1; c,h,w
grid = grid.transpose(0, 1).transpose(1, 2).squeeze(-1)
grid = grid.numpy()
grid = (grid * 255).astype(np.uint8)
filename = "{}_gs-{:06}_e-{:06}_b-{:06}.png".format(
k, global_step, current_epoch, batch_idx)
path = os.path.join(root, filename)
os.makedirs(os.path.split(path)[0], exist_ok=True)
Image.fromarray(grid).save(path)
def log_img(self, pl_module, batch, batch_idx, split="train"):
check_idx = batch_idx if self.log_on_batch_idx else pl_module.global_step
if (self.check_frequency(check_idx)
and # batch_idx % self.batch_freq == 0
hasattr(pl_module, "log_images") and
callable(pl_module.log_images) and self.max_images > 0):
logger = type(pl_module.logger)
is_train = pl_module.training
if is_train:
pl_module.eval()
with torch.no_grad():
images = pl_module.log_images(batch,
split=split,
**self.log_images_kwargs)
for k in images:
N = min(images[k].shape[0], self.max_images)
images[k] = images[k][:N]
if isinstance(images[k], torch.Tensor):
images[k] = images[k].detach().cpu()
if self.clamp:
images[k] = torch.clamp(images[k], -1., 1.)
#self.log_local(pl_module.logger.save_dir, split, images,
# pl_module.global_step, pl_module.current_epoch,
# batch_idx)
logger_log_images = self.logger_log_images.get(
logger, lambda *args, **kwargs: None)
logger_log_images(pl_module, images, pl_module.global_step, split)
if is_train:
pl_module.train()
def check_frequency(self, check_idx):
if ((check_idx % self.batch_freq) == 0 or
(check_idx in self.log_steps)) and (check_idx > 0
or self.log_first_step):
try:
self.log_steps.pop(0)
except IndexError as e:
#print(e)
pass
return True
return False
def on_train_batch_end(self, trainer, pl_module, outputs, batch,
batch_idx):
if not self.disabled and (pl_module.global_step > 0
or self.log_first_step):
self.log_img(pl_module, batch, batch_idx, split="train")
if __name__ == "__main__":
parser = argparse.ArgumentParser(description="Train VAE using ldm.")
parser.add_argument("--batch_size", type=int, default=1)
args = parser.parse_args()
config = OmegaConf.load('ldm_autoencoder_kl.yaml')
lightning_config = config.pop("lightning", OmegaConf.create())
trainer_config = lightning_config.get("trainer", OmegaConf.create())
trainer_opt = argparse.Namespace(**trainer_config)
trainer = Trainer.from_argparse_args(
trainer_opt,
callbacks=[
ImageLogger(batch_frequency=1000,
max_images=8,
increase_log_steps=False,
log_on_batch_idx=True),
ModelCheckpoint(dirpath='checkpoints',
filename='{epoch:06}',
verbose=True,
save_last=True)
])
model = instantiate_from_config(config.model)
model.learning_rate = config.model.base_learning_rate
data = AudioDiffusionDataModule('teticio/audio-diffusion-256',
batch_size=args.batch_size)
trainer.fit(model, data)
|