Spaces:
Runtime error
Runtime error
File size: 5,581 Bytes
31ccd79 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 |
#!/usr/bin/env python3
import warnings
from typing import Optional, Tuple, Union
import torch
from ...models import UNet2DModel
from ...pipeline_utils import DiffusionPipeline, ImagePipelineOutput
from ...schedulers import KarrasVeScheduler
class KarrasVePipeline(DiffusionPipeline):
r"""
Stochastic sampling from Karras et al. [1] tailored to the Variance-Expanding (VE) models [2]. Use Algorithm 2 and
the VE column of Table 1 from [1] for reference.
[1] Karras, Tero, et al. "Elucidating the Design Space of Diffusion-Based Generative Models."
https://arxiv.org/abs/2206.00364 [2] Song, Yang, et al. "Score-based generative modeling through stochastic
differential equations." https://arxiv.org/abs/2011.13456
Parameters:
unet ([`UNet2DModel`]): U-Net architecture to denoise the encoded image.
scheduler ([`KarrasVeScheduler`]):
Scheduler for the diffusion process to be used in combination with `unet` to denoise the encoded image.
"""
# add type hints for linting
unet: UNet2DModel
scheduler: KarrasVeScheduler
def __init__(self, unet: UNet2DModel, scheduler: KarrasVeScheduler):
super().__init__()
scheduler = scheduler.set_format("pt")
self.register_modules(unet=unet, scheduler=scheduler)
@torch.no_grad()
def __call__(
self,
batch_size: int = 1,
num_inference_steps: int = 50,
generator: Optional[torch.Generator] = None,
output_type: Optional[str] = "pil",
return_dict: bool = True,
**kwargs,
) -> Union[Tuple, ImagePipelineOutput]:
r"""
Args:
batch_size (`int`, *optional*, defaults to 1):
The number of images to generate.
generator (`torch.Generator`, *optional*):
A [torch generator](https://pytorch.org/docs/stable/generated/torch.Generator.html) to make generation
deterministic.
num_inference_steps (`int`, *optional*, defaults to 50):
The number of denoising steps. More denoising steps usually lead to a higher quality image at the
expense of slower inference.
output_type (`str`, *optional*, defaults to `"pil"`):
The output format of the generate image. Choose between
[PIL](https://pillow.readthedocs.io/en/stable/): `PIL.Image.Image` or `nd.array`.
return_dict (`bool`, *optional*, defaults to `True`):
Whether or not to return a [`~pipeline_utils.ImagePipelineOutput`] instead of a plain tuple.
Returns:
[`~pipeline_utils.ImagePipelineOutput`] or `tuple`: [`~pipelines.utils.ImagePipelineOutput`] if
`return_dict` is True, otherwise a `tuple. When returning a tuple, the first element is a list with the
generated images.
"""
if "torch_device" in kwargs:
device = kwargs.pop("torch_device")
warnings.warn(
"`torch_device` is deprecated as an input argument to `__call__` and will be removed in v0.3.0."
" Consider using `pipe.to(torch_device)` instead."
)
# Set device as before (to be removed in 0.3.0)
if device is None:
device = "cuda" if torch.cuda.is_available() else "cpu"
self.to(device)
img_size = self.unet.config.sample_size
shape = (batch_size, 3, img_size, img_size)
model = self.unet
# sample x_0 ~ N(0, sigma_0^2 * I)
sample = torch.randn(*shape) * self.scheduler.config.sigma_max
sample = sample.to(self.device)
self.scheduler.set_timesteps(num_inference_steps)
for t in self.progress_bar(self.scheduler.timesteps):
# here sigma_t == t_i from the paper
sigma = self.scheduler.schedule[t]
sigma_prev = self.scheduler.schedule[t - 1] if t > 0 else 0
# 1. Select temporarily increased noise level sigma_hat
# 2. Add new noise to move from sample_i to sample_hat
sample_hat, sigma_hat = self.scheduler.add_noise_to_input(sample, sigma, generator=generator)
# 3. Predict the noise residual given the noise magnitude `sigma_hat`
# The model inputs and output are adjusted by following eq. (213) in [1].
model_output = (sigma_hat / 2) * model((sample_hat + 1) / 2, sigma_hat / 2).sample
# 4. Evaluate dx/dt at sigma_hat
# 5. Take Euler step from sigma to sigma_prev
step_output = self.scheduler.step(model_output, sigma_hat, sigma_prev, sample_hat)
if sigma_prev != 0:
# 6. Apply 2nd order correction
# The model inputs and output are adjusted by following eq. (213) in [1].
model_output = (sigma_prev / 2) * model((step_output.prev_sample + 1) / 2, sigma_prev / 2).sample
step_output = self.scheduler.step_correct(
model_output,
sigma_hat,
sigma_prev,
sample_hat,
step_output.prev_sample,
step_output["derivative"],
)
sample = step_output.prev_sample
sample = (sample / 2 + 0.5).clamp(0, 1)
image = sample.cpu().permute(0, 2, 3, 1).numpy()
if output_type == "pil":
image = self.numpy_to_pil(sample)
if not return_dict:
return (image,)
return ImagePipelineOutput(images=image)
|