File size: 3,045 Bytes
38a7da0
 
a990f25
 
08fbba1
 
 
3ae5946
38a7da0
54ecabd
38a7da0
54ecabd
6c8d339
54ecabd
 
 
4579397
54ecabd
 
 
 
4579397
54ecabd
 
4579397
54ecabd
 
 
869e886
54ecabd
 
 
 
38a7da0
 
84d3dde
 
 
 
 
c279ea6
f304c9c
 
6f19d22
f304c9c
6f19d22
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f304c9c
 
 
 
c279ea6
 
 
 
 
 
 
 
84d3dde
 
 
aed1a1c
473819b
84d3dde
 
 
08fbba1
473819b
 
 
f304c9c
08fbba1
ed5f4de
08fbba1
c279ea6
5ef14a2
c279ea6
 
 
f304c9c
c279ea6
 
84d3dde
8f8b684
84d3dde
 
 
 
 
 
 
 
 
 
 
 
 
2f8eb98
84d3dde
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
import whisper
import gradio as gr
import openai 
import os

openai.api_key = os.environ["OPENAI_API_KEY"]

model = whisper.load_model("small")


def transcribe(audio):
    model = whisper.load_model("base")
    result = model.transcribe(audio)
    return result["text"]
    
# def transcribe(audio):
    
#     #time.sleep(3)
#     # load audio and pad/trim it to fit 30 seconds
#     audio = whisper.load_audio(audio)
#     audio = whisper.pad_or_trim(audio)

#     # make log-Mel spectrogram and move to the same device as the model
#     mel = whisper.log_mel_spectrogram(audio).to(model.device)

#     # detect the spoken language
#     _, probs = model.detect_language(mel)
#     print(f"Detected language: {max(probs, key=probs.get)}")

#     # decode the audio
#     options = whisper.DecodingOptions(fp16 = False)
#     result = whisper.decode(model, mel, options)
#     return result.text
    
    
def process_text(input_text):
    # Apply your function here to process the input text
    output_text = input_text.upper()
    return output_text

def get_completion(prompt, model='gpt-3.5-turbo'):
    messages = [
        {"role": "system", "content": """You are a world class nurse practitioner. You are provided with the transcription. \
    Summarize the text as follows: \ 
        
    Date of Alert: 
    Claimant: 
    Client/Employer: 
    Claim #: 
    DOI (Date of Injury): 
    Date of Visit: 
    Provider: 
    Diagnosis Treated: 
    Subjective findings: 
    Objective Findings: 
    Treatment plan: 
    Medications: 
    RTW (Return to Work) Status: 
    Restrictions:
    NOV (Next Office Visit):
         """
        },
        {"role": "user", "content": prompt}
        ]
    response = openai.ChatCompletion.create(
        model = model, 
        messages = messages, 
        temperature = 0, 
        
    ) 
    return response.choices[0].message['content']

demo = gr.Blocks()

with demo:
    audio = gr.Audio(source="microphone", type="filepath")
    
    b1 = gr.Button("Transcribe audio")
    b2 = gr.Button("Process text")


    text1 = gr.Textbox()
    text2 = gr.Textbox()

    prompt = text1
    
  
    
    b1.click(transcribe, inputs=audio, outputs=text1)
    b2.click(get_completion, inputs=text1, outputs=text2)


    # b1.click(transcribe, inputs=audio, outputs=text1)
    # b2.click(get_completion, inputs=prompt, outputs=text2)



demo.launch()

# In this example, the process_text function just converts the input text to uppercase, but you can replace it with your desired function. The Gradio Blocks interface will have two buttons: "Transcribe audio" and "Process text". The first button transcribes the audio and fills the first textbox, and the second button processes the text from the first textbox and fills the second textbox.


# gr.Interface(
#     title = 'OpenAI Whisper ASR Gradio Web UI', 
#     fn=transcribe, 
#     inputs=[
#         gr.inputs.Audio(source="microphone", type="filepath")
#     ],
#     outputs=[
#         "textbox"
#     ],
    
#     live=True).launch()