import whisper import gradio as gr import openai import os openai.api_key = os.environ["OPENAI_API_KEY"] model = whisper.load_model("small") def transcribe(audio): #time.sleep(3) # load audio and pad/trim it to fit 30 seconds audio = whisper.load_audio(audio) audio = whisper.pad_or_trim(audio) # make log-Mel spectrogram and move to the same device as the model mel = whisper.log_mel_spectrogram(audio).to(model.device) # detect the spoken language _, probs = model.detect_language(mel) print(f"Detected language: {max(probs, key=probs.get)}") # decode the audio options = whisper.DecodingOptions(fp16 = False) result = whisper.decode(model, mel, options) return result.text def process_text(input_text): # Apply your function here to process the input text output_text = input_text.upper() return output_text def get_completion(prompt, model='gpt-3.5-turbo'): messages = [ {"role": "system", "content": """You are a world class nurse practitioner. You are provided with the transcription. \ Summarize the text and put it in a table format with rows as follows: \ Date of Alert Claimant Client/Employer Claim # DOI (Date of Injury) Date of Visit Provider Diagnosis Treated Subjective findings Objective Findings Treatment plan Medications RTW (Return to Work) Status Restrictions NOV (Next Office Visit) """ }, {"role": "user", "content": prompt} ] response = openai.ChatCompletion.create( model = model, messages = messages, temperature = 0, ) return response.choices[0].message['content'] demo = gr.Blocks() with demo: audio = gr.Audio(source="microphone", type="filepath") b1 = gr.Button("Transcribe audio") b2 = gr.Button("Process text") text1 = gr.Textbox() text2 = gr.Textbox() prompt = text1 b1.click(transcribe, inputs=audio, outputs=text1) b2.click(get_completion, inputs=text1, outputs=text2) # b1.click(transcribe, inputs=audio, outputs=text1) # b2.click(get_completion, inputs=prompt, outputs=text2) demo.launch() # In this example, the process_text function just converts the input text to uppercase, but you can replace it with your desired function. The Gradio Blocks interface will have two buttons: "Transcribe audio" and "Process text". The first button transcribes the audio and fills the first textbox, and the second button processes the text from the first textbox and fills the second textbox. # gr.Interface( # title = 'OpenAI Whisper ASR Gradio Web UI', # fn=transcribe, # inputs=[ # gr.inputs.Audio(source="microphone", type="filepath") # ], # outputs=[ # "textbox" # ], # live=True).launch()