File size: 4,269 Bytes
8474315
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
# Class to define the network architecture of the models
import torch
import torch.nn as nn
import torch.nn.functional as F
from torch.utils.data import DataLoader
from torch.optim import Adam


class VanillaLSTM(nn.Module):
    def __init__(

        self, input_dim=1, hidden_dim=64, output_dim=1, num_layers=2, dropout=0.2

    ):
        super(VanillaLSTM, self).__init__()
        self.hidden_dim = hidden_dim
        self.num_layers = num_layers

        self.lstm = nn.LSTM(
            input_size=input_dim,
            hidden_size=hidden_dim,
            num_layers=num_layers,
            batch_first=True,
            dropout=dropout,
        )
        self.fc = nn.Linear(in_features=hidden_dim, out_features=output_dim)

    def forward(self, x):
        h0 = torch.zeros(self.num_layers, x.size(0), self.hidden_dim).requires_grad_()
        c0 = torch.zeros(self.num_layers, x.size(0), self.hidden_dim).requires_grad_()

        out, (hn, cn) = self.lstm(x, (h0.detach(), c0.detach()))
        out = self.fc(out[:, -1, :])

        return out

class VAE(nn.Module):

    def __init__(self, seq_len=48, n_features=1, hidden_dim=64, latent_dim=16, dropout=0.3):
        super(VAE, self).__init__()
        self.seq_len = seq_len
        self.hidden_dim = hidden_dim

        # Encoder
        self.enc_lstm = nn.LSTM(
            input_size=n_features,
            hidden_size=hidden_dim,
            batch_first=True
        )
        self.enc_dropout = nn.Dropout(p=dropout)
        self.fc_mu = nn.Linear(hidden_dim, latent_dim)
        self.fc_var = nn.Linear(hidden_dim, latent_dim)

        # Decoder
        self.fc_upsample = nn.Linear(latent_dim, seq_len * hidden_dim)
        self.dec_dropout = nn.Dropout(p=dropout)
        self.dec_lstm = nn.LSTM(
            input_size=hidden_dim,
            hidden_size=hidden_dim,
            batch_first=True
        )
        self.fc_out = nn.Linear(hidden_dim, n_features)

    def reparameterize(self, mu, log_var):
        std = torch.exp(0.5 * log_var)
        eps = torch.randn_like(std)
        return mu + eps * std

    def forward(self, x):
        # Encode
        _, (h_enc, c_enc) = self.enc_lstm(x)
        h_enc = h_enc.squeeze(0)  # shape: (batch_size, hidden_dim)
        h_enc = self.enc_dropout(h_enc)
        mu, log_var = self.fc_mu(h_enc), self.fc_var(h_enc)

        # Reparameterize at latent space
        z = self.reparameterize(mu, log_var)

        # Decode
        z = self.fc_upsample(z)
        z = z.view(-1, self.seq_len, self.hidden_dim)
        decoded, _ = self.dec_lstm(z)
        dec_out = self.dec_dropout(decoded)
        out = self.fc_out(dec_out)

        return out, mu, log_var

class Transformer(nn.Module):

    def __init__(self, input_dim=1, model_dim=64, num_layers=2, num_heads=4, dropout=0.2):
        super(Transformer, self).__init__()
        self.model_dim = model_dim
        self.num_layers = num_layers

        self.embedding = nn.Linear(input_dim, model_dim)

        encoder_layer = nn.TransformerEncoderLayer(
            d_model=model_dim,
            nhead=num_heads,
            dropout=dropout,
            dim_feedforward=2*model_dim, # 128
            batch_first=True
        )
        encoder_norm = nn.LayerNorm(model_dim)

        self.transformer_encoder = nn.TransformerEncoder(
            encoder_layer,
            num_layers=num_layers,
            norm=encoder_norm
        )

        decoder_layer = nn.TransformerDecoderLayer(
            d_model=model_dim,
            nhead=num_heads,
            dropout=dropout,
            dim_feedforward=2*model_dim, # 128
            batch_first=True
        )
        decoder_norm = nn.LayerNorm(model_dim)

        self.transformer_decoder = nn.TransformerDecoder(
            decoder_layer,
            num_layers=num_layers,
            norm=decoder_norm
        )
        self.output = nn.Linear(model_dim, input_dim)

    def forward(self, x):
        embed_x = self.embedding(x)
        enc_out = self.transformer_encoder(embed_x)
        dec_out = self.transformer_decoder(embed_x, enc_out)
        out = self.output(dec_out)
        return out