File size: 5,730 Bytes
8474315
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
import os
import logging
import copy
import torch
import torch.nn as nn
from torch.optim import Adam
from src.pipeline import VanillaLSTM, VAE, Transformer


# Class for model training and evaluation
class Trainer:

    def __init__(self):
        self.logger = logging.getLogger(__name__)
        self.device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
        self.batch_size = None,
        self.model = None
        self.model_type = None
        self.optimizer = None
        self.criterion = None
        self.train_loader = None
        self.val_loader = None
        self.test_loader = None
        self.n_epochs = None
        self.train_history = { 'train_loss': [], 'val_loss': [] }
        self.best_model = None
        self.best_val_loss = float('inf')

    def init_model(self, model, model_type):
        """

        Initialize the model, optimizer and loss function



        :param model: The model architecture

        :param model_type: The type of the model

        """
        self.logger.info("Initialize the model...")

        self.model = model.to(self.device)
        if model_type not in ["lstm", "vae", "transformer"]:
            raise ValueError("Model type not supported")
        self.model_type = model_type


    def config_train(self, batch_size=32, n_epochs=20, lr=0.001):
        """

        Configure the training parameters



        :param batch_size: The batch size, default is 32

        :param n_epochs: The number of epochs, default is 20

        :param lr: The learning rate, default is 0.001

        """
        self.logger.info("Configure the training parameters...")

        self.batch_size = batch_size
        self.n_epochs = n_epochs

        self.optimizer = Adam(self.model.parameters(), lr=lr)
        self.criterion = nn.MSELoss()

    def train(self, train_loader, val_loader):
        """

        Train the model



        :param train_loader: The training data loader

        :param val_loader: The validation data loader

        """
        print("Training the model...")
        self.logger.info("Start training...")

        self.train_loader = train_loader
        self.val_loader = val_loader

        self.best_val_loss = float('inf')
        self.best_model = None

        for epoch in range(self.n_epochs):
            train_loss = self._train_epoch()
            val_loss = self._val_epoch()

            self.train_history['train_loss'].append(train_loss)
            self.train_history['val_loss'].append(val_loss)

            self.logger.info(f"Epoch {epoch + 1}/{self.n_epochs}, Train Loss: {train_loss:.4f}, Val Loss: {val_loss:.4f}")

        self.logger.info("Training completed!")

        print("Training completed!")

        return self.best_model, self.train_history

    def _train_epoch(self):
        """

        Train the model for one epoch

        """
        self.model.train()
        train_loss = 0

        for seq in self.train_loader:

            self.optimizer.zero_grad()

            if self.model_type == "lstm":
                X_train = seq[:, :-1, :]  # All timestamp except the last one
                y_train = seq[:, -1, :]   # Final timestamp

                X_train = X_train.to(self.device)
                y_train = y_train.to(self.device)

                output = self.model(X_train)
                loss = self.criterion(output, y_train)

            elif self.model_type == "vae":
                X = seq.to(self.device)
                recon_X, mu, logvar = self.model(X)
                recon_loss = self.criterion(recon_X, X)
                kl_div = -0.5 * torch.sum(1 + logvar - mu.pow(2) - logvar.exp()) / X.size(0)
                loss = recon_loss + 0.2 * kl_div

            elif self.model_type == "transformer":
                X = seq.to(self.device)

                recon_X = self.model(X)
                loss = self.criterion(recon_X, X)
            else:
                raise ValueError("Model type not supported")

            loss.backward()
            self.optimizer.step()

            train_loss += loss.item()

        return train_loss / len(self.train_loader)

    def _val_epoch(self):
        """

        Validate the model for one epoch

        """
        self.model.eval()
        val_loss = 0

        with torch.no_grad():
            for seq in self.val_loader:

                if self.model_type == "lstm":
                    X_val = seq[:, :-1, :]
                    y_val = seq[:, -1, :]

                    X_val = X_val.to(self.device)
                    y_val = y_val.to(self.device)

                    output = self.model(X_val)
                    loss = self.criterion(output, y_val)

                elif self.model_type == "vae":
                    X = seq.to(self.device)
                    recon_X, mu, logvar = self.model(X)
                    recon_loss = self.criterion(recon_X, X)
                    kl_div = -0.5 * torch.sum(1 + logvar - mu.pow(2) - logvar.exp()) / X.size(0)
                    loss = recon_loss + 0.2 * kl_div

                elif self.model_type == "transformer":
                    X_val = seq.to(self.device)

                    recon_X = self.model(X_val)
                    loss = self.criterion(recon_X, X_val)

                else:
                    raise ValueError("Model type not supported")

                val_loss += loss.item()

        if val_loss < self.best_val_loss:
            self.best_model = copy.deepcopy(self.model)
            self.best_val_loss = val_loss

        return val_loss / len(self.val_loader)