File size: 1,632 Bytes
8474315
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
from src.config.config import setup_logging
from pipeline import Preprocessor, NYCDataLoader, Trainer, VanillaLSTM, Transformer, VAE, save_model
from path_config import RAW_DATA_PATH

def train():

    seq_length = 24

    setup_logging()

    # Preprocess the data
    preprocessor = Preprocessor()
    preprocessor.preprocess_data(file_path=RAW_DATA_PATH, window_size=seq_length)

    # Load the preprocessed data
    data_loader = NYCDataLoader(batch_size=32)
    train_loader, val_loader, test_loader = data_loader.load_data()

    # Initialize the Trainer
    trainer = Trainer()

    # Train Vanilla LSTM model
    trainer.init_model(model=VanillaLSTM(), model_type="lstm")
    trainer.config_train(batch_size=32, n_epochs=20, lr=0.001)
    lstm_model, lstm_history = trainer.train(train_loader=train_loader, val_loader=val_loader)

    # Train VAE model
    trainer.init_model(model=VAE(seq_len=seq_length), model_type="vae")
    trainer.config_train(batch_size=32, n_epochs=20, lr=0.001)
    vae_model, vae_history = trainer.train(train_loader=train_loader, val_loader=val_loader)

    # Train Transformer model
    trainer.init_model(model=Transformer(), model_type="transformer")
    trainer.config_train(batch_size=32, n_epochs=5, lr=0.001)
    transformer_model, transformer_history = trainer.train(train_loader=train_loader, val_loader=val_loader)

    # Save the models
    save_model(lstm_model, "lstm_model_small.pth")
    save_model(vae_model, "vae_model_small.pth")
    save_model(transformer_model, "transformer_model_small.pth")


if __name__ == '__main__':
    train()