File size: 13,746 Bytes
2145052 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 |
from io import BytesIO
import os
from typing import List, Tuple
from openpyxl import Workbook
from openpyxl.styles import Font
from openpyxl.styles import Alignment
from openpyxl.styles import numbers
from openpyxl.styles.borders import Border, Side
import streamlit as st
import pandas as pd
import numpy as np
from data.cli_dropbox import dropbox_download_file, dropbox_upload_bytefile
from .dataframes import complete_affaires, complete_arrets, complete_intervenants, complete_supplements, complete_vehicules, merge_clients, merge_affaires, merge_intervenants_affaires,cast_specifics_to_str
def check_paths(paths: List[str]) -> bool:
files = []
for path in paths:
if not os.path.exists(path) or not os.path.isfile(path):
files.append(path)
return files
def load_excels(datapath: str, excel_sources: List[dict]) -> pd.DataFrame:
data = {}
for key, value in excel_sources.items():
data[key] = pd.read_excel(os.path.join(datapath, excel_sources[key]['path']),
sheet_name=excel_sources[key]['sheet_name'],
usecols=excel_sources[key]['columns'],
nrows=excel_sources[key]['rows'],
skiprows=excel_sources[key]['skiprows'],
)
return data
@st.cache_data
def load_transform_data(datapath: str, excel_sources: List[dict]) -> pd.DataFrame:
not_files = check_paths([os.path.join(datapath, excel['path']) for excel in excel_sources.values()])
if len(not_files):
st.error(f'Erreur: une partie de la base de données n\'est pas accessible. {not_files}')
return
data = load_excels(datapath, excel_sources)
merge_clients(data)
merge_affaires(data)
merge_intervenants_affaires(data)
complete_vehicules(data)
complete_supplements(data)
complete_intervenants(data)
complete_affaires(data)
complete_arrets(data)
cast_specifics_to_str(data)
return data
def filter_multiple_conditions_data(df, filters):
filtered_df = df[df[filters.keys()].isin(filters.values()).all(axis=1)]
return filtered_df
def draw_border(sheet, start_cell: Tuple[int, int], end_cell: Tuple[int, int]):
# Define the border style
border_style = Border(left=Side(style='thin'),
right=Side(style='thin'),
top=Side(style='thin'),
bottom=Side(style='thin'))
# Define the range of cells to apply borders to
start_cell = sheet.cell(row=start_cell[0], column=start_cell[1])
end_cell = sheet.cell(row=end_cell[0] , column=end_cell[1])
cell_range = '{}:{}'.format(start_cell.coordinate, end_cell.coordinate)
# Apply borders to the range of cells
for row in sheet[cell_range]:
for cell in row:
cell.border = border_style
def get_fit_totals(dataframe):
column_sums = {}
for column in dataframe.columns:
if dataframe[column].dtype in [int, float] and not np.isnan(dataframe[column]).all():
column_sums[column] = dataframe[column].sum()
column_sums['rows'] = dataframe.shape[0]
column_sums['worked_hours'] = column_sums['H.\njour'] + column_sums['H.\nnuit (1)']
return column_sums
def load_fit(datapath: str, intervenant: str, year: str, month: str, week: str):
filename = f'{intervenant}_{year}_{month}_{week}_FIT.xlsx'
if dropbox_download_file(f'/SEC_IND_GTP2023_OUTPUT/FIT/{intervenant}/{year}/{month}/{week}/{filename}', os.path.join(datapath, filename)):
#TODO get file from dropbox
if os.path.exists(os.path.join(datapath, filename)) and os.path.isfile(os.path.join(datapath, filename)):
data = pd.read_excel(os.path.join(datapath, filename), sheet_name='Sheet', skiprows=6, nrows=10)
data.dropna(axis=0, how='all', inplace=True)
totals = get_fit_totals(data)
if 'fit' not in st.session_state.keys():
st.session_state['fit'] = {}
if intervenant not in st.session_state['fit'].keys():
st.session_state['fit'][intervenant] = {}
if year not in st.session_state['fit'][intervenant].keys():
st.session_state['fit'][intervenant][year] = {}
if month not in st.session_state['fit'][intervenant][year].keys():
st.session_state['fit'][intervenant][year][month] = {}
if week not in st.session_state['fit'][intervenant][year][month].keys():
st.session_state['fit'][intervenant][year][month][week] = {}
st.session_state['fit'][intervenant][year][month][week] = {
'data': data,
'totals': totals
}
return data
print('error loading fit')
return None
async def update_society_fit(dropbox_datapath: str, form: dict):
society = form['prestataire']
year = form['year']
month = form['month']
week = form['week']
dropbox_path = f'{dropbox_datapath}/SOCIETE/{society}/{year}/{month}/{week}'
filename = f'{society}_{year}_{month}_{week}_FIT.csv'
fit_df = pd.DataFrame([form])
fit = dropbox_download_file(os.path.join(dropbox_path, filename), '', False)
if fit:
fit = pd.read_csv(BytesIO(fit), index_col=0)
fit_df = pd.concat([fit, fit_df], ignore_index=True)
csv_data = BytesIO()
fit_df.to_csv(csv_data, index = False)
dropbox_upload_bytefile(dropbox_data_path=dropbox_path, dropbox_file_name=filename, bytes=csv_data)
return fit_df
async def update_society_payroll(dropbox_datapath: str, form: dict):
prestataire = form['Prestataire']
fournisseur = form['Fournisseur']
year = form['year']
month = form['month']
dropbox_path = f'{dropbox_datapath}/PRESTATIONS/{prestataire}/{year}/{month}'
filename = f'{prestataire}_{fournisseur}_{year}_{month}_PRESTATIONS_CROISEES.xlsx'
payroll_df = pd.DataFrame([form])
payroll = dropbox_download_file(os.path.join(dropbox_path, filename), '', False)
if payroll:
payroll = pd.read_excel(BytesIO(payroll))
payroll_df = pd.concat([payroll, payroll_df], ignore_index=True)
excel_data = BytesIO()
payroll_df.to_excel(excel_data, index = False)
dropbox_upload_bytefile(dropbox_data_path=dropbox_path, dropbox_file_name=filename, bytes=excel_data)
return payroll_df
async def update_historical_week(dropbox_datapath: str, form: dict):
intervenant = form['intervenant']
year = form['year']
month = form['month']
week = form['week']
dropbox_path = f'{dropbox_datapath}/FIT/{intervenant}/{year}/{month}/{week}'
historic_df = pd.DataFrame([form])
historic = dropbox_download_file(dropbox_path + '/historique.xlsx', '', False)
if historic:
historic = pd.read_excel(historic)
historic_df = pd.concat([historic, historic_df], ignore_index=True)
excel_data = BytesIO()
historic_df.to_excel(excel_data, index = False)
dropbox_upload_bytefile(dropbox_data_path=dropbox_path, dropbox_file_name='historique.xlsx', bytes=excel_data)
return historic_df
async def update_monthly_payroll(dropbox_datapath: str, payroll_dict: dict, year: str, month: str, week: str):
dropbox_path = f'{dropbox_datapath}/PAYES'
# dropbox_path = dropbox_datapath
nom = payroll_dict['Nom']
prenom = payroll_dict['Prénom']
payroll_df = pd.DataFrame([payroll_dict])
payroll = dropbox_download_file(dropbox_path + f'/tableau_prepaye_{year}_{month}.xlsx', '', False)
if payroll:
payroll = pd.read_excel(payroll)
intervenant_rows = payroll[(payroll['Nom'] == nom) & (payroll['Prénom'] == prenom)]
# print(len(intervenant_rows))
if len(intervenant_rows):
current_week_row = payroll[(payroll['Nom'] == nom) & (payroll_df['Prénom'] == prenom) & (payroll['Semaine'] == f'{year}-s{week}')]
# print(len(current_week_row))
if len(current_week_row):
payroll.iloc[current_week_row.index] = payroll_df.loc[0]
payroll_df = payroll
else:
payroll_df = pd.concat([payroll, payroll_df], ignore_index=True)
else:
payroll_df = pd.concat([payroll, payroll_df], ignore_index=True)
rows_for_total = payroll_df[(payroll_df['Nom'] == nom) & (payroll_df['Prénom'] == prenom) & (payroll_df['Semaine'].str.contains(f'{year}-s'))]
total = pd.DataFrame([rows_for_total.drop(columns=['Nom', 'Prénom', 'Semaine']).sum()])
total['Nom'] = nom
total['Prénom'] = prenom
total['Semaine'] = 'TOTAL'
all_but_total = payroll_df[~((payroll_df['Nom'] == nom) & (payroll_df['Prénom'] == prenom) & (payroll_df['Semaine'].str.contains('TOTAL')))]
# print(all_but_total)
payroll_df = pd.concat([total, all_but_total], ignore_index=True, axis = 0)
# print(payroll_df)
payroll_df = payroll_df.sort_values(by=['Nom', 'Prénom', 'Semaine'])
column_order = payroll_df.columns[-3:].tolist() + payroll_df.columns[:-3].tolist()
payroll_df = payroll_df[column_order]
excel_data = BytesIO()
payroll_df.to_excel(excel_data, index = False)
dropbox_upload_bytefile(dropbox_data_path=dropbox_path, dropbox_file_name=f'tableau_prepaye_{year}_{month}.xlsx', bytes=excel_data)
return payroll_df
def write_excel_fit(datapath: str, filename: str, data, starting_row = 7):
workbook = Workbook()
sheet = workbook.active
sheet.column_dimensions['A'].width = 60
sheet.column_dimensions['B'].width = 40
sheet.column_dimensions['C'].width = 80
sheet.column_dimensions['D'].width = 40
sheet.column_dimensions['E'].width = 20
sheet.column_dimensions['K'].width = 60
sheet.column_dimensions['L'].width = 40
sheet.column_dimensions['M'].width = 40
sheet.column_dimensions['O'].width = 20
sheet.column_dimensions['P'].width = 40
sheet.column_dimensions['Q'].width = 40
sheet.column_dimensions['R'].width = 40
sheet.column_dimensions['S'].width = 20
sheet.row_dimensions[29].height = 30
sheet.row_dimensions[31].height = 40
sheet['A1'] = 'SECMI'
sheet['D1'] = 'FICHE D\'INTERVENTION ET DE TEMPS (FIT)'
sheet['A3'] = f'Intervenant: {data["intervenant"]}'
draw_border(sheet, (3, 1), (3, 1))
sheet.merge_cells('M1:N1')
sheet['M1'] = f'Année: {data["year"]}'
draw_border(sheet, (1, 13), (1, 13))
sheet.merge_cells('M2:N2')
sheet['M2'] = f'Semaine: {data["week"]}'
draw_border(sheet, (2, 13), (2, 13))
sheet['A18'] = '(1) travail effectué entre 21h00 et 06h00'
sheet.merge_cells('A19:S22')
sheet['A19'] = 'Commentaires SECMI:'
draw_border(sheet, (19, 1), (22, 19))
sheet.merge_cells('A23:S26')
sheet['A23'] = 'Commentaires Client:'
draw_border(sheet, (23, 1), (26, 19))
sheet.merge_cells('A30:D30')
sheet['A30'] = 'Signature client:'
draw_border(sheet, (30, 1), (30, 4))
sheet.merge_cells('A31:D32')
draw_border(sheet, (31, 1), (32, 4))
sheet['E30'] = 'Note\n(de 0 à 10)'
draw_border(sheet, (30, 5), (30, 5))
sheet.merge_cells('E31:E32')
draw_border(sheet, (31, 5), (32, 5))
sheet['L30'] = 'Signature chargé d\'affaire:'
draw_border(sheet, (30, 12), (30, 12))
sheet.merge_cells('L31:L32')
draw_border(sheet, (31, 12), (32, 12))
sheet['M30'] = 'Signature intervenant:'
draw_border(sheet, (30, 13), (30, 13))
sheet.merge_cells('M31:M32')
draw_border(sheet, (31, 13), (32, 13))
sheet.merge_cells('A33:T33')
sheet.merge_cells('A34:T34')
draw_border(sheet, (33, 1), (34, 19))
sheet['A33'] = 'Service Administratif'
sheet['A34'] = 'Tel: +33 6 02 14 55 16 - Email : [email protected]'
# Define the starting row for writing the dictionary
draw_border(sheet, (starting_row, 1), (starting_row + 10, 19))
draw_border(sheet, (starting_row - 2, 4), (starting_row -2, 19))
sheet.cell(row=starting_row - 2, column=4, value='TOTAUX (en heure)')
# Write the dictionary to the sheet starting from the specified row
header = list(data['data'].keys())
for col_i, key in enumerate(header):
sheet.cell(row=starting_row, column=col_i + 1, value=key)
if key in data['totals'].keys():
sheet.cell(row=starting_row - 2, column=col_i + 1, value=data['totals'][key])
for cell in sheet[starting_row - 2]:
cell.font = Font(bold=True)
for cell in sheet[starting_row]:
cell.font = Font(bold=True)
starting_row += 1
for col_i, key in enumerate(data['data'].keys()):
values = data['data'][key]
for j, value in enumerate(values):
sheet.cell(row=starting_row + j, column=col_i + 1, value=value)
alignment = Alignment(horizontal='center', vertical='center')
# Set the decimal format
decimal_format = numbers.FORMAT_NUMBER_00
for row in sheet.iter_rows():
for cell in row:
cell.alignment = alignment
cell.number_format = decimal_format
sheet['A1'].font = Font(bold=True, underline='single', size=11)
sheet['D1'].font = Font(bold=True, underline='single', size=11)
sheet['A19'].font = Font(bold=True, underline='single')
sheet['A19'].alignment = Alignment(horizontal='left', vertical='top')
sheet['A23'].font = Font(bold=True, underline='single')
sheet['A23'].alignment = Alignment(horizontal='left', vertical='top')
sheet['A33'].font = Font(bold=True)
sheet['A33'].alignment = Alignment(horizontal='center')
sheet['A34'].font = Font(bold=True)
sheet['A34'].alignment = Alignment(horizontal='center')
workbook.save(os.path.join(datapath, filename))
|