File size: 12,533 Bytes
2145052
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
import os
import numpy as np
import pandas as pd
import streamlit as st
import datetime as dt
from data.cli_dropbox import dropbox_upload_file
from data.datastructures import generate_intervenant_fit, generate_intervenant_monthly_payroll, generate_society_fit, generate_society_payroll

from data.excels import get_fit_totals, update_historical_week, update_monthly_payroll, update_society_fit, update_society_payroll, write_excel_fit
from utils.indemnites import calculate_arrets
from utils.times import date_to_week_day, date_to_week_number
from utils.device import get_current_ip, get_device_id
from const import root_path
import asyncio


def merge_dicts(list_of_dicts):
    merged_dict = {}

    for dictionary in list_of_dicts:
        for key, value in dictionary.items():
            if key not in merged_dict:
                merged_dict[key] = []
            merged_dict[key].append(value)

    return merged_dict

@st.cache_resource
async def read_transform_write_excel(datapath: str = f'{root_path}/data/output', form: dict = None):
    fit_data = {
        "year": form["year"],
        "month": form["month"],
        "week": form["week"],
        "intervenant": form["intervenant"],
    }

    fit_dict = generate_intervenant_fit(form)
    fit_df = pd.DataFrame(fit_dict, index=[0])

    
    if 'fit' in st.session_state.keys() \
        and form["intervenant"] in st.session_state['fit'].keys() \
        and form["year"] in st.session_state['fit'][form["intervenant"]].keys() \
        and form["month"] in st.session_state['fit'][form["intervenant"]][form["year"]].keys() \
        and form["week"] in st.session_state['fit'][form["intervenant"]][form["year"]][form["month"]].keys():
        df = st.session_state['fit'][form["intervenant"]][form["year"]][form["month"]][form["week"]]['data']
        # Concatenate DataFrame and dictionary DataFrame
        fit_df = pd.concat([df, fit_df], ignore_index=True)

    totals = get_fit_totals(fit_df)
    fit_data['data'] = fit_df
    fit_data['totals'] = totals
    path = f'{form["intervenant"]}_{form["year"]}_{form["month"]}_{form["week"]}_FIT.xlsx'

    write_excel_fit(datapath, path, fit_data)
    dropbox_upload_file(datapath, path, f'/SEC_IND_GTP2023_OUTPUT/FIT/{form["intervenant"]}/{form["year"]}/{form["month"]}/{form["week"]}', path)
    
    
    if 'fit' not in st.session_state.keys():
        st.session_state['fit'] = {}
    
    if form["intervenant"] not in st.session_state['fit'].keys():
        st.session_state['fit'][form["intervenant"]] = {}
    if form["year"] not in st.session_state['fit'][form["intervenant"]].keys():
        st.session_state['fit'][form["intervenant"]][form["year"]] = {}
    if form["month"] not in st.session_state['fit'][form["intervenant"]][form["year"]].keys():
        st.session_state['fit'][form["intervenant"]][form["year"]][form["month"]] = {}
    if form["week"] not in st.session_state['fit'][form["intervenant"]][form["year"]][form["month"]].keys():
        st.session_state['fit'][form["intervenant"]][form["year"]][form["month"]][form["week"]] = {}
    st.session_state['fit'][form["intervenant"]][form["year"]][form["month"]][form["week"]] = {
        'data': fit_data['data'],
        'totals': totals
    }
    st.toast('Fiche de temps envoyée', icon="📨")
    return st.session_state['fit'][form["intervenant"]][form["year"]][form["month"]][form["week"]]

def validate():
    data_dict = {
        "intervenant": st.session_state.intervenant,
        "nom": st.session_state.df['intervenants'][st.session_state.df['intervenants']['intervenant'] == st.session_state.intervenant]['Nom'].values[0],
        "prenom": st.session_state.df['intervenants'][st.session_state.df['intervenants']['intervenant'] == st.session_state.intervenant]['Prénom'].values[0],
        "employeur": st.session_state.df['intervenants'][st.session_state.df['intervenants']['intervenant'] == st.session_state.intervenant]['Employeur'].values[0],
        "client": st.session_state.client,
        "affaire": st.session_state.affaire,
        "prestataire": st.session_state.prestataire, 
        "vehicule": st.session_state.vehicules, 
        "location": st.session_state.location,
        "activities": st.session_state.activities_text_area, 

        "date": st.session_state.date_input,
        "year": st.session_state.date_input.year,
        "month": st.session_state.date_input.month,
        "week": date_to_week_number(st.session_state.date_input), 
        "public_holyday": st.session_state.public_holyday, 
        "start_time": st.session_state.start_time_input, 
        "end_time": st.session_state.end_time_input, 

        "pause_time": st.session_state.pause_time_input, 
        "supplement_1": st.session_state.supplement1,
        "supplement_2": st.session_state.supplement2,
        "supplement_3": st.session_state.supplement3,

        # "contract_hours": st.session_state.df['all'].contract_hours[st.session_state.indexes_all['contract_hours']],
        # "maladie": st.session_state.total_hours if st.session_state.affaire.find('Absence Maladie Individuelle') != -1 or \
        #                                             st.session_state.affaire.find('Absence Maladie Professionnelle') != -1 \
        #                                         else 0,
        "maladie": calculate_arrets() if st.session_state.affaire.find('Absence Maladie Individuelle') != -1 or \
                                        st.session_state.affaire.find('Absence Maladie Professionnelle') != -1 \
                                        else 0,
        "arret_travail": calculate_arrets() if st.session_state.affaire.find('Absence Accident du Travail') != -1 else 0,
        "conges_payes": calculate_arrets() if st.session_state.affaire.find('Absence Congés payés') != -1 else 0,
        "conges_sans_solde": calculate_arrets() if st.session_state.affaire.find('Absence Congés sans solde') != -1 else 0,
        "rtt": calculate_arrets() if st.session_state.affaire.find('Absence RTT') != -1 else 0,
        "formation": calculate_arrets() if st.session_state.affaire.find('Absence Formation') != -1 else 0,
        "evenement_familial": calculate_arrets() if st.session_state.affaire.find('Absence Evénement Familial') != -1 else 0,
        
        
        "worked_hours": st.session_state.total_hours if st.session_state.total_hours else 0,
        "night_hours": st.session_state.night_hours if st.session_state.night_hours else 0,
        "contract_hours": st.session_state.contract_hours if st.session_state.contract_hours else 0,
        "supp_contract_hours": st.session_state.supp_contract_hours if st.session_state.supp_contract_hours else 0,
        "day_hours": st.session_state.total_hours - st.session_state.night_hours if st.session_state.total_hours and st.session_state.night_hours else 0,
        "drive_hours": st.session_state.drive_hours if st.session_state.drive_hours else 0,
        "saturday_hours": st.session_state.total_hours if date_to_week_day(st.session_state.date_input) == 'samedi' else 0,
        "sunday_hours": st.session_state.total_hours if date_to_week_day(st.session_state.date_input) == 'dimanche' else 0,
        "holyday_hours": st.session_state.total_hours if st.session_state.public_holyday else 0,
        "overtime_25": st.session_state.overtime25 if st.session_state.overtime25 else 0,
        "overtime_50": st.session_state.overtime50 if st.session_state.overtime50 else 0,
        "overtime_100": st.session_state.overtime100 if st.session_state.overtime100 else 0,

        "meal_nonus": st.session_state.meal_bonus if st.session_state.meal_bonus else 0,
        "mileage_allowances_bonus": st.session_state.mileage_allowances_bonus if st.session_state.mileage_allowances_bonus else 0,
        "personal_tools_bonus": st.session_state.personal_tools_bonus  if st.session_state.personal_tools_bonus else 0,
        "intervention_bonus": st.session_state.intervention_bonus if st.session_state.intervention_bonus else 0,
        "on_call_bonus": st.session_state.on_call_bonus if st.session_state.on_call_bonus else 0,
        "team_leader_bonus": st.session_state.team_leader_bonus if st.session_state.team_leader_bonus else 0,
        # "other_bonus": st.session_state.electrical_bonus + st.session_state.painting_bonus + st.session_state.welding_bonus if st.session_state.electrical_bonus + st.session_state.painting_bonus + st.session_state.welding_bonus else 0,
        "device_model": get_device_id(),
        "device_ip": get_current_ip(),
        "modified": dt.datetime.now(),
    }
    if 'completed_forms' not in st.session_state:
        st.session_state['completed_forms'] = []
    st.session_state.completed_forms.append(data_dict)
    st.toast('Fiche de temps validée et enregistrée', icon="✅")

def reset(df):
    st.session_state.df = df
    st.session_state.indexes_all = {k: 0 for k in df['all'].columns}
    st.session_state.indexes_affaire = {k: 0 for k in df['affaire'].columns}
    st.session_state.indexes_intervenants = {k: 0 for k in df['intervenants'].columns}
    st.session_state.indexes_vehicules = {k: 0 for k in df['vehicules'].columns}


    st.session_state.intervenant = df['intervenants'].intervenant[0]
    st.session_state.client = df['affaire'].client[0]
    st.session_state.affaire = df['affaire'].affaire[0]
    st.session_state.prestataire = df['affaire'].prestataire[0]
    st.session_state.vehicules = df['vehicules'].vehicules[0]

    st.session_state.activities_text_area = ""

    st.session_state.date_input = dt.datetime.now()
    st.session_state.public_holyday = False
    st.session_state.start_time_input = dt.time(8, 00)
    st.session_state.end_time_input = dt.time(17, 00)

    st.session_state.pause_time_input = dt.time(0, 00)
    

    st.session_state.supplement1 = df['supplements'].supplements[0]
    st.session_state.supplement2 = df['supplements'].supplements[0]
    st.session_state.supplement3 = df['supplements'].supplements[0]
    st.toast('Nouvelle fiche de temps ', icon="🔃")

async def run_async_tasks():
    await read_transform_write_excel(form=st.session_state.completed_forms[-1])
    st.toast('Mise à jour de votre historique, veuillez patienter', icon="💾")
    historic_df = await update_historical_week(dropbox_datapath='/SEC_IND_GTP2023_OUTPUT', form=st.session_state.completed_forms[-1])
    st.toast('Historique mis à jour', icon="✅")

    st.toast('Mise à jour du Tableau de société, veuillez patienter', icon="💾")
    society_form = generate_society_fit(form=st.session_state.completed_forms[-1])
    society_df = await update_society_fit(dropbox_datapath='/SEC_IND_GTP2023_OUTPUT', form=society_form)
    st.toast('Tableau de société mis à jour', icon="✅")

    st.toast('Mise à jour des Prestations croisées, veuillez patienter', icon="💾")
    society_form = generate_society_payroll(form=st.session_state.completed_forms[-1])
    society_df = await update_society_payroll(dropbox_datapath='/SEC_IND_GTP2023_OUTPUT', form=society_form)
    st.toast('Prestations croisées mis à jour', icon="✅")

    st.toast('Mise à jour du Tableau de paye, veuillez patienter', icon="💾")
    payroll = generate_intervenant_monthly_payroll(form=historic_df)
    await update_monthly_payroll(dropbox_datapath='/SEC_IND_GTP2023_OUTPUT', payroll_dict=payroll, year=st.session_state.completed_forms[-1]['year'] , month=st.session_state.completed_forms[-1]['month'], week=st.session_state.completed_forms[-1]['week'])
    st.toast('Tableau de paye mis à jour', icon="✅")
    st.toast('Fiche de temps dupliquée', icon="📄")

def validate_duplicate():
    if st.session_state.intervenant != '-' and st.session_state.client != '-' and st.session_state.affaire != '-':
        validate()
        # print(st.session_state.completed_forms[-1])
        if st.session_state.date_input < dt.datetime.now().date():
            st.session_state.date_input += dt.timedelta(days=1)
        
        asyncio.run(run_async_tasks())

    else:
        st.toast('Veuillez remplir les champs intervenant, client et affaire', icon="⚠️")

def validate_end():
    if st.session_state.intervenant != '-' and st.session_state.client != '-' and st.session_state.affaire != '-':
        validate()
        
        asyncio.run(run_async_tasks())

        st.session_state.completed_forms = []
        st.toast('Vous pouvez fermer l\'application ', icon="👍")
    else:
        st.toast('Veuillez remplir les champs intervenant, client et affaire', icon="⚠️")