import gradio as gr import torch from transformers import AutoModelForSpeechSeq2Seq, AutoProcessor, pipeline device = "cuda:0" if torch.cuda.is_available() else "cpu" torch_dtype = torch.float16 if torch.cuda.is_available() else torch.float32 model_id = "openai/whisper-large-v3" model = AutoModelForSpeechSeq2Seq.from_pretrained( model_id, torch_dtype=torch_dtype, low_cpu_mem_usage=True, use_safetensors=True ) model.to(device) processor = AutoProcessor.from_pretrained(model_id) pipe = pipeline( "automatic-speech-recognition", model=model, tokenizer=processor.tokenizer, feature_extractor=processor.feature_extractor, max_new_tokens=128, torch_dtype=torch_dtype, device=device, ) def transcribe(audio): result = pipe(audio) return result["text"] demo = gr.Interface( fn=transcribe, inputs=gr.Audio(source="upload", type="filepath"), outputs="text", title="Whisper Large-v3 ASR", description="Transcribe audio files using the Whisper large-v3 model" ) if __name__ == "__main__": demo.launch()