thak123 commited on
Commit
e793ba7
·
verified ·
1 Parent(s): 1475f9f

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +13 -37
app.py CHANGED
@@ -2,48 +2,24 @@ import numpy as np
2
  import os
3
  import gradio as gr
4
 
5
- os.environ["WANDB_DISABLED"] = "true"
6
-
7
- from datasets import load_dataset, load_metric
8
- from transformers import (
9
- AutoConfig,
10
- # AutoModelForSequenceClassification,
11
- AutoTokenizer,
12
- TrainingArguments,
13
- logging,
14
- pipeline
15
- )
16
-
17
-
18
-
19
-
20
- # model_name =
21
-
22
 
23
- # tokenizer = AutoTokenizer.from_pretrained(model_name)
 
24
 
25
- # config = AutoConfig.from_pretrained(model_name)
26
-
27
- # pipe = pipeline("text-classification")
28
-
29
- # pipe("This restaurant is awesome")
30
-
31
-
32
-
33
-
34
- label2id = {
35
- "LABEL_0": "negative",
36
- "LABEL_1": "neutral",
37
- "LABEL_2": "positive"
38
- }
39
 
40
- analyzer = pipeline(
 
41
 
42
- "sentiment-analysis", model="thak123/Cro-Frida", tokenizer="EMBEDDIA/crosloengual-bert"
 
 
43
 
44
- )
45
- def predict_sentiment(x):
46
- return label2id[analyzer(x)[0]["label"]]
 
 
47
 
48
 
49
  interface = gr.Interface(
 
2
  import os
3
  import gradio as gr
4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5
 
6
+ import xgboost as xgb
7
+ from sklearn.feature_extraction.text import TfidfVectorizer
8
 
9
+ os.environ["WANDB_DISABLED"] = "true"
 
 
 
 
 
 
 
 
 
 
 
 
 
10
 
11
+ model_file_name = "xgb_reg.pkl"
12
+ vectorizer_file_name = 'vectorizer.pk'
13
 
14
+ # load
15
+ xgb_model_loaded = pickle.load(open(model_file_name, "rb"))
16
+ vectorizer_loaded = pickle.load(open(vectorizer_file_name, "rb"))
17
 
18
+ # predict
19
+ def predict_sentiment(predict_texts):
20
+ predictions_loaded = xgb_model_loaded.predict(vectorizer_loaded.transform(predict_texts))
21
+ return predictions_loaded
22
+ #le.inverse_transform(predictions_loaded)
23
 
24
 
25
  interface = gr.Interface(