Spaces:
Sleeping
Sleeping
File size: 25,327 Bytes
5672777 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 |
# Copyright 2023 The TensorFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""A light weight utilities to train NLP models."""
import json
import os
import tempfile
from absl import logging
import tensorflow as tf, tf_keras
from tensorflow.python.util import deprecation
from official.common import distribute_utils
from official.modeling import grad_utils
_SUMMARY_TXT = 'training_summary.txt'
_MIN_SUMMARY_STEPS = 10
def _should_export_checkpoint(strategy):
return (not strategy) or strategy.extended.should_checkpoint
def _should_export_summary(strategy):
return (not strategy) or strategy.extended.should_save_summary
def _save_checkpoint(strategy, checkpoint, model_dir, checkpoint_prefix):
"""Saves model to with provided checkpoint prefix."""
if _should_export_checkpoint(strategy):
checkpoint_path = os.path.join(model_dir, checkpoint_prefix)
saved_path = checkpoint.save(checkpoint_path)
logging.info('Saving model as TF checkpoint: %s', saved_path)
else:
# In multi worker training we need every worker to save checkpoint, because
# variables can trigger synchronization on read and synchronization needs
# all workers to participate. To avoid workers overriding each other we save
# to a temporary directory on non-chief workers.
tmp_dir = tempfile.mkdtemp()
checkpoint.save(os.path.join(tmp_dir, 'ckpt'))
tf.io.gfile.rmtree(tmp_dir)
return
def _get_input_iterator(input_fn, strategy):
"""Returns distributed dataset iterator."""
# When training with TPU pods, datasets needs to be cloned across
# workers. Since Dataset instance cannot be cloned in eager mode, we instead
# pass callable that returns a dataset.
if not callable(input_fn):
raise ValueError('`input_fn` should be a closure that returns a dataset.')
iterator = iter(strategy.distribute_datasets_from_function(input_fn))
return iterator
def _float_metric_value(metric):
"""Gets the value of a float-value keras metric."""
return metric.result().numpy().astype(float)
def clip_by_global_norm_callback(grads_and_vars):
"""Performs gradient clipping."""
grads, variables = zip(*grads_and_vars)
(clipped_grads, _) = tf.clip_by_global_norm(grads, clip_norm=1.0)
return zip(clipped_grads, variables)
def steps_to_run(current_step, steps_per_epoch, steps_per_loop):
"""Calculates steps to run on device."""
if steps_per_loop <= 0:
raise ValueError('steps_per_loop should be positive integer.')
if steps_per_loop == 1:
return steps_per_loop
remainder_in_epoch = current_step % steps_per_epoch
if remainder_in_epoch != 0:
return min(steps_per_epoch - remainder_in_epoch, steps_per_loop)
else:
return steps_per_loop
def write_txt_summary(training_summary, summary_dir):
"""Writes a summary text file to record stats."""
if not tf.io.gfile.exists(summary_dir):
tf.io.gfile.mkdir(summary_dir)
summary_path = os.path.join(summary_dir, _SUMMARY_TXT)
with tf.io.gfile.GFile(summary_path, 'wb') as f:
logging.info('Training Summary: \n%s', str(training_summary))
f.write(json.dumps(training_summary, indent=4))
@deprecation.deprecated(
None, 'This function is deprecated and we do not expect adding new '
'functionalities. Please do not have your code depending '
'on this library.')
def run_customized_training_loop(
# pylint: disable=invalid-name
_sentinel=None,
# pylint: enable=invalid-name
strategy=None,
model_fn=None,
loss_fn=None,
scale_loss=True,
model_dir=None,
train_input_fn=None,
steps_per_epoch=None,
num_eval_per_epoch=1,
steps_per_loop=None,
epochs=1,
eval_input_fn=None,
eval_steps=None,
metric_fn=None,
init_checkpoint=None,
custom_callbacks=None,
run_eagerly=False,
sub_model_export_name=None,
explicit_allreduce=False,
pre_allreduce_callbacks=None,
post_allreduce_callbacks=None,
train_summary_interval=0,
allreduce_bytes_per_pack=0):
"""Run BERT pretrain model training using low-level API.
Args:
_sentinel: Used to prevent positional parameters. Internal, do not use.
strategy: Distribution strategy on which to run low level training loop.
model_fn: Function that returns a tuple (model, sub_model). Caller of this
function should add optimizer to the `model` via calling
`model.compile()` API or manually setting `model.optimizer` attribute.
Second element of the returned tuple(sub_model) is an optional sub model
to be used for initial checkpoint -- if provided.
loss_fn: Function with signature func(labels, logits) and returns a loss
tensor.
scale_loss: Whether to divide the raw loss by number of replicas before
gradients calculation.
model_dir: Model directory used during training for restoring/saving model
weights.
train_input_fn: Function that returns a tf.data.Dataset used for training.
steps_per_epoch: Number of steps to run per epoch. At the end of each
epoch, model checkpoint will be saved and evaluation will be conducted
if evaluation dataset is provided.
num_eval_per_epoch: Number of evaluations per epoch.
steps_per_loop: Number of steps per graph-mode loop. In order to reduce
communication in eager context, training logs are printed every
steps_per_loop.
epochs: Number of epochs to train.
eval_input_fn: Function that returns evaluation dataset. If none,
evaluation is skipped.
eval_steps: Number of steps to run evaluation. Required if `eval_input_fn`
is not none.
metric_fn: A metrics function that returns either a Keras Metric object or
a list of Keras Metric objects to record evaluation result using
evaluation dataset or with training dataset after every epoch.
init_checkpoint: Optional checkpoint to load to `sub_model` returned by
`model_fn`.
custom_callbacks: A list of Keras Callbacks objects to run during
training. More specifically, `on_train_begin(), on_train_end(),
on_batch_begin()`, `on_batch_end()`, `on_epoch_begin()`,
`on_epoch_end()` methods are invoked during training. Note that some
metrics may be missing from `logs`.
run_eagerly: Whether to run model training in pure eager execution. This
should be disable for TPUStrategy.
sub_model_export_name: If not None, will export `sub_model` returned by
`model_fn` into checkpoint files. The name of intermediate checkpoint
file is {sub_model_export_name}_step_{step}.ckpt and the last
checkpint's name is {sub_model_export_name}.ckpt; if None, `sub_model`
will not be exported as checkpoint.
explicit_allreduce: Whether to explicitly perform gradient allreduce,
instead of relying on implicit allreduce in optimizer.apply_gradients().
default is False. For now, if training using FP16 mixed precision,
explicit allreduce will aggregate gradients in FP16 format. For TPU and
GPU training using FP32, explicit allreduce will aggregate gradients in
FP32 format.
pre_allreduce_callbacks: A list of callback functions that takes gradients
and model variables pairs as input, manipulate them, and returns a new
gradients and model variables paris. The callback functions will be
invoked in the list order and before gradients are allreduced. With
mixed precision training, the pre_allreduce_allbacks will be applied on
scaled_gradients. Default is no callbacks. Only used when
explicit_allreduce=True.
post_allreduce_callbacks: A list of callback functions that takes
gradients and model variables pairs as input, manipulate them, and
returns a new gradients and model variables paris. The callback
functions will be invoked in the list order and right before gradients
are applied to variables for updates. Default is no callbacks. Only used
when explicit_allreduce=True.
train_summary_interval: Step interval for training summaries. If the value
is a negative number, then training summaries are not enabled.
allreduce_bytes_per_pack: A non-negative integer. Breaks collective
operations into packs of certain size. If it's zero, all gradients are
in one pack. Breaking gradient into packs could enable overlap between
allreduce and backprop computation. This flag only takes effect when
explicit_allreduce is set to True.'
Returns:
Trained model.
Raises:
ValueError: (1) When model returned by `model_fn` does not have optimizer
attribute or when required parameters are set to none. (2) eval args are
not specified correctly. (3) metric_fn must be a callable if specified.
(4) sub_model_checkpoint_name is specified, but `sub_model` returned
by `model_fn` is None.
"""
if _sentinel is not None:
raise ValueError('only call `run_customized_training_loop()` '
'with named arguments.')
required_arguments = [
strategy, model_fn, loss_fn, model_dir, steps_per_epoch, train_input_fn
]
steps_between_evals = int(steps_per_epoch / num_eval_per_epoch)
if [arg for arg in required_arguments if arg is None]:
raise ValueError('`strategy`, `model_fn`, `loss_fn`, `model_dir`, '
'`steps_per_epoch` and `train_input_fn` are required '
'parameters.')
if not steps_per_loop:
if tf.config.list_logical_devices('TPU'):
# One can't fully utilize a TPU with steps_per_loop=1, so in this case
# default users to a more useful value.
steps_per_loop = min(1000, steps_between_evals)
else:
steps_per_loop = 1
logging.info('steps_per_loop not specified. Using steps_per_loop=%d',
steps_per_loop)
if steps_per_loop > steps_between_evals:
logging.warning(
'steps_per_loop: %d is specified to be greater than '
' steps_between_evals: %d, we will use steps_between_evals as'
' steps_per_loop.', steps_per_loop, steps_between_evals)
steps_per_loop = steps_between_evals
assert tf.executing_eagerly()
if run_eagerly:
if isinstance(
strategy,
(tf.distribute.TPUStrategy, tf.distribute.experimental.TPUStrategy)):
raise ValueError(
'TPUStrategy should not run eagerly as it heavily relies on graph'
' optimization for the distributed system.')
if eval_input_fn and eval_steps is None:
raise ValueError(
'`eval_step` is required when `eval_input_fn ` is not none.')
if metric_fn and not callable(metric_fn):
raise ValueError(
'if `metric_fn` is specified, metric_fn must be a callable.')
total_training_steps = steps_per_epoch * epochs
train_iterator = _get_input_iterator(train_input_fn, strategy)
eval_loss_metric = tf_keras.metrics.Mean('training_loss', dtype=tf.float32)
with distribute_utils.get_strategy_scope(strategy):
# To correctly place the model weights on accelerators,
# model and optimizer should be created in scope.
model, sub_model = model_fn()
if not hasattr(model, 'optimizer'):
raise ValueError('User should set optimizer attribute to model '
'inside `model_fn`.')
if sub_model_export_name and sub_model is None:
raise ValueError('sub_model_export_name is specified as %s, but '
'sub_model is None.' % sub_model_export_name)
callback_list = tf_keras.callbacks.CallbackList(
callbacks=custom_callbacks, model=model)
optimizer = model.optimizer
if init_checkpoint:
logging.info(
'Checkpoint file %s found and restoring from '
'initial checkpoint for core model.', init_checkpoint)
checkpoint = tf.train.Checkpoint(model=sub_model, encoder=sub_model)
checkpoint.read(init_checkpoint).assert_existing_objects_matched()
logging.info('Loading from checkpoint file completed')
train_loss_metric = tf_keras.metrics.Mean('training_loss', dtype=tf.float32)
eval_metrics = metric_fn() if metric_fn else []
if not isinstance(eval_metrics, list):
eval_metrics = [eval_metrics]
# If evaluation is required, make a copy of metric as it will be used by
# both train and evaluation.
train_metrics = [
metric.__class__.from_config(metric.get_config())
for metric in eval_metrics
]
# Create summary writers
if _should_export_summary(strategy):
summary_dir = os.path.join(model_dir, 'summaries')
else:
# In multi worker training we need every worker to write summary, because
# variables can trigger synchronization on read and synchronization needs
# all workers to participate.
summary_dir = tempfile.mkdtemp()
eval_summary_writer = tf.summary.create_file_writer(
os.path.join(summary_dir, 'eval'))
last_summary_step = 0
if steps_per_loop >= _MIN_SUMMARY_STEPS and train_summary_interval >= 0:
# Only writes summary when the stats are collected sufficiently over
# enough steps.
train_summary_writer = tf.summary.create_file_writer(
os.path.join(summary_dir, 'train'))
else:
train_summary_writer = tf.summary.create_noop_writer()
# Collects training variables.
training_vars = model.trainable_variables
def _replicated_step(inputs):
"""Replicated training step."""
inputs, labels = inputs
with tf.GradientTape() as tape:
model_outputs = model(inputs, training=True)
loss = loss_fn(labels, model_outputs)
# Raw loss is used for reporting in metrics/logs.
raw_loss = loss
if scale_loss:
# Scales down the loss for gradients to be invariant from replicas.
loss = loss / strategy.num_replicas_in_sync
if explicit_allreduce:
grad_utils.minimize_using_explicit_allreduce(tape, optimizer, loss,
training_vars,
pre_allreduce_callbacks,
post_allreduce_callbacks,
allreduce_bytes_per_pack)
else:
if isinstance(optimizer, tf_keras.mixed_precision.LossScaleOptimizer):
with tape:
scaled_loss = optimizer.get_scaled_loss(loss)
scaled_grads = tape.gradient(scaled_loss, training_vars)
grads = optimizer.get_unscaled_gradients(scaled_grads)
else:
grads = tape.gradient(loss, training_vars)
optimizer.apply_gradients(zip(grads, training_vars))
# For reporting, the metric takes the mean of losses.
train_loss_metric.update_state(raw_loss)
for metric in train_metrics:
metric.update_state(labels, model_outputs)
@tf.function
def train_steps(iterator, steps):
"""Performs distributed training steps in a loop.
Args:
iterator: the distributed iterator of training datasets.
steps: an tf.int32 integer tensor to specify number of steps to run
inside host training loop.
Raises:
ValueError: Any of the arguments or tensor shapes are invalid.
"""
if not isinstance(steps, tf.Tensor):
raise ValueError('steps should be an Tensor. Python object may cause '
'retracing.')
for _ in tf.range(steps):
strategy.run(_replicated_step, args=(next(iterator),))
def train_single_step(iterator):
"""Performs a distributed training step.
Args:
iterator: the distributed iterator of training datasets.
Raises:
ValueError: Any of the arguments or tensor shapes are invalid.
"""
strategy.run(_replicated_step, args=(next(iterator),))
def test_step(iterator):
"""Calculates evaluation metrics on distributed devices."""
def _test_step_fn(inputs):
"""Replicated accuracy calculation."""
inputs, labels = inputs
model_outputs = model(inputs, training=False)
for metric in eval_metrics:
metric.update_state(labels, model_outputs)
return model_outputs, labels
outputs, labels = strategy.run(_test_step_fn, args=(next(iterator),))
outputs = tf.nest.map_structure(strategy.experimental_local_results,
outputs)
labels = tf.nest.map_structure(strategy.experimental_local_results,
labels)
return outputs, labels
if not run_eagerly:
train_single_step = tf.function(train_single_step)
test_step = tf.function(test_step)
def _run_evaluation(current_training_step, test_iterator):
"""Runs validation steps and aggregate metrics.
Args:
current_training_step: tf.int32 tensor containing the current step.
test_iterator: distributed iterator of test datasets.
Returns:
A dict of metic names and values.
"""
# The last batch of the evaluation is often smaller than previous ones.
# Moreover, in some distributed pieces it might even be empty. Therefore,
# different from the way training_loss is calculated, it is needed to
# gather all the logits and labels here to calculate the evaluation loss
# outside.
loss_list, loss_weights = list(), list()
for _ in range(eval_steps):
outputs, labels = test_step(test_iterator)
for cur_logits, cur_labels in zip(outputs, labels):
# This is to handle cases when cur_labels is not a single tensor,
# but a dict of tensors.
cur_weight = tf.shape(tf.nest.flatten(cur_labels)[0])[0]
if cur_weight != 0:
loss_list.append(loss_fn(cur_labels, cur_logits).numpy())
loss_weights.append(cur_weight)
# The sample_weights are the actual number of examples in each batch,
# a summation of numbers of examples in each replica if using
# distributed training.
eval_loss_metric.update_state(loss_list, sample_weight=loss_weights)
logs = {}
with eval_summary_writer.as_default():
for metric in [eval_loss_metric] + eval_metrics + model.metrics:
metric_value = _float_metric_value(metric)
logs[metric.name] = metric_value
logging.info('Step: [%d] Validation %s = %f', current_training_step,
metric.name, metric_value)
tf.summary.scalar(
metric.name, metric_value, step=current_training_step)
eval_summary_writer.flush()
return logs
# Training loop starts here.
checkpoint = tf.train.Checkpoint(
model=model, optimizer=optimizer, global_step=optimizer.iterations)
sub_model_checkpoint = tf.train.Checkpoint(
model=sub_model,
global_step=optimizer.iterations) if sub_model_export_name else None
latest_checkpoint_file = tf.train.latest_checkpoint(model_dir)
if latest_checkpoint_file:
logging.info('Checkpoint file %s found and restoring from '
'checkpoint', latest_checkpoint_file)
checkpoint.restore(latest_checkpoint_file)
logging.info('Loading from checkpoint file completed')
current_step = optimizer.iterations.numpy()
checkpoint_name = 'ctl_step_{step}.ckpt'
logs = {}
callback_list.on_train_begin()
while current_step < total_training_steps and not model.stop_training:
if current_step % steps_per_epoch == 0:
callback_list.on_epoch_begin(int(current_step / steps_per_epoch) + 1)
# Training loss/metric are taking average over steps inside micro
# training loop. We reset the their values before each round.
train_loss_metric.reset_states()
for metric in train_metrics + model.metrics:
metric.reset_states()
callback_list.on_batch_begin(current_step)
# Runs several steps in the host while loop.
steps = steps_to_run(current_step, steps_between_evals, steps_per_loop)
if tf.config.list_physical_devices('GPU'):
# TODO(zongweiz): merge with train_steps once tf.while_loop
# GPU performance bugs are fixed.
for _ in range(steps):
train_single_step(train_iterator)
else:
# Converts steps to a Tensor to avoid tf.function retracing.
train_steps(train_iterator, tf.convert_to_tensor(steps, dtype=tf.int32))
train_loss = _float_metric_value(train_loss_metric)
current_step += steps
# Updates training logging.
training_status = 'Train Step: %d/%d / loss = %s' % (
current_step, total_training_steps, train_loss)
if current_step >= last_summary_step + train_summary_interval:
summary_writer = train_summary_writer
last_summary_step = current_step
else:
summary_writer = tf.summary.create_noop_writer()
with summary_writer.as_default():
if callable(optimizer.learning_rate):
tf.summary.scalar(
'learning_rate',
optimizer.learning_rate(current_step),
step=current_step)
tf.summary.scalar(train_loss_metric.name, train_loss, step=current_step)
for metric in train_metrics + model.metrics:
metric_value = _float_metric_value(metric)
training_status += ' %s = %f' % (metric.name, metric_value)
tf.summary.scalar(metric.name, metric_value, step=current_step)
summary_writer.flush()
logging.info(training_status)
# If no need for evaluation, we only call on_batch_end with train_loss,
# this is to ensure we get granular global_step/sec on Tensorboard.
if current_step % steps_between_evals:
callback_list.on_batch_end(current_step - 1, {'loss': train_loss})
else:
# Save a submodel with the step in the file name after each epoch.
if sub_model_export_name:
_save_checkpoint(
strategy, sub_model_checkpoint, model_dir,
'%s_step_%d.ckpt' % (sub_model_export_name, current_step))
# Save model checkpoints and run validation steps after each epoch
# (with the exception of the final epoch which is handled after the
# training loop).
if current_step < total_training_steps:
_save_checkpoint(strategy, checkpoint, model_dir,
checkpoint_name.format(step=current_step))
if eval_input_fn:
# Re-initialize evaluation metric.
eval_loss_metric.reset_states()
for metric in eval_metrics + model.metrics:
metric.reset_states()
logging.info('Running evaluation after step: %s.', current_step)
logs = _run_evaluation(current_step,
_get_input_iterator(eval_input_fn, strategy))
# We add train_loss here rather than call on_batch_end twice to make
# sure that no duplicated values are generated.
logs['loss'] = train_loss
callback_list.on_batch_end(current_step - 1, logs)
# Calls on_epoch_end after each real epoch ends to prevent mis-calculation
# of training steps.
if current_step % steps_per_epoch == 0:
callback_list.on_epoch_end(int(current_step / steps_per_epoch), logs)
if sub_model_export_name:
_save_checkpoint(strategy, sub_model_checkpoint, model_dir,
'%s.ckpt' % sub_model_export_name)
_save_checkpoint(strategy, checkpoint, model_dir,
checkpoint_name.format(step=current_step))
if eval_input_fn:
# Re-initialize evaluation metric.
eval_loss_metric.reset_states()
for metric in eval_metrics + model.metrics:
metric.reset_states()
logging.info('Running final evaluation after training is complete.')
logs = _run_evaluation(current_step,
_get_input_iterator(eval_input_fn, strategy))
callback_list.on_epoch_end(int(current_step / steps_per_epoch), logs)
training_summary = {
'total_training_steps': total_training_steps,
'train_loss': _float_metric_value(train_loss_metric),
}
for metric in model.metrics:
training_summary[metric.name] = _float_metric_value(metric)
if eval_metrics:
training_summary['last_train_metrics'] = _float_metric_value(
train_metrics[0])
training_summary['eval_metrics'] = _float_metric_value(eval_metrics[0])
write_txt_summary(training_summary, summary_dir)
if not _should_export_summary(strategy):
tf.io.gfile.rmtree(summary_dir)
callback_list.on_train_end()
return model
|