File size: 4,468 Bytes
5672777
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
# Copyright 2023 The TensorFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

"""Base config template."""


BACKBONES = [
    'resnet',
    'spinenet',
]

MULTILEVEL_FEATURES = [
    'fpn',
    'identity',
]

# pylint: disable=line-too-long
# For ResNet, this freezes the variables of the first conv1 and conv2_x
# layers [1], which leads to higher training speed and slightly better testing
# accuracy. The intuition is that the low-level architecture (e.g., ResNet-50)
# is able to capture low-level features such as edges; therefore, it does not
# need to be fine-tuned for the detection task.
# Note that we need to trailing `/` to avoid the incorrect match.
# [1]: https://github.com/facebookresearch/Detectron/blob/master/detectron/core/config.py#L198
RESNET_FROZEN_VAR_PREFIX = r'(resnet\d+)\/(conv2d(|_([1-9]|10))|batch_normalization(|_([1-9]|10)))\/'
REGULARIZATION_VAR_REGEX = r'.*(kernel|weight):0$'

BASE_CFG = {
    'model_dir': '',
    'use_tpu': True,
    'strategy_type': 'tpu',
    'isolate_session_state': False,
    'train': {
        'iterations_per_loop': 100,
        'batch_size': 64,
        'total_steps': 22500,
        'num_cores_per_replica': None,
        'input_partition_dims': None,
        'optimizer': {
            'type': 'momentum',
            'momentum': 0.9,
            'nesterov': True,  # `False` is better for TPU v3-128.
        },
        'learning_rate': {
            'type': 'step',
            'warmup_learning_rate': 0.0067,
            'warmup_steps': 500,
            'init_learning_rate': 0.08,
            'learning_rate_levels': [0.008, 0.0008],
            'learning_rate_steps': [15000, 20000],
        },
        'checkpoint': {
            'path': '',
            'prefix': '',
        },
        # One can use 'RESNET_FROZEN_VAR_PREFIX' to speed up ResNet training
        # when loading from the checkpoint.
        'frozen_variable_prefix': '',
        'train_file_pattern': '',
        'train_dataset_type': 'tfrecord',
        # TODO(b/142174042): Support transpose_input option.
        'transpose_input': False,
        'regularization_variable_regex': REGULARIZATION_VAR_REGEX,
        'l2_weight_decay': 0.0001,
        'gradient_clip_norm': 0.0,
        'input_sharding': False,
    },
    'eval': {
        'input_sharding': True,
        'batch_size': 8,
        'eval_samples': 5000,
        'min_eval_interval': 180,
        'eval_timeout': None,
        'num_steps_per_eval': 1000,
        'type': 'box',
        'use_json_file': True,
        'val_json_file': '',
        'eval_file_pattern': '',
        'eval_dataset_type': 'tfrecord',
        # When visualizing images, set evaluation batch size to 40 to avoid
        # potential OOM.
        'num_images_to_visualize': 0,
    },
    'predict': {
        'batch_size': 8,
    },
    'architecture': {
        'backbone': 'resnet',
        'min_level': 3,
        'max_level': 7,
        'multilevel_features': 'fpn',
        'use_bfloat16': True,
        # Note that `num_classes` is the total number of classes including
        # one background classes whose index is 0.
        'num_classes': 91,
    },
    'anchor': {
        'num_scales': 3,
        'aspect_ratios': [1.0, 2.0, 0.5],
        'anchor_size': 4.0,
    },
    'norm_activation': {
        'activation': 'relu',
        'batch_norm_momentum': 0.997,
        'batch_norm_epsilon': 1e-4,
        'batch_norm_trainable': True,
        'use_sync_bn': False,
    },
    'resnet': {
        'resnet_depth': 50,
    },
    'spinenet': {
        'model_id': '49',
    },
    'fpn': {
        'fpn_feat_dims': 256,
        'use_separable_conv': False,
        'use_batch_norm': True,
    },
    'postprocess': {
        'use_batched_nms': False,
        'max_total_size': 100,
        'nms_iou_threshold': 0.5,
        'score_threshold': 0.05,
        'pre_nms_num_boxes': 5000,
    },
    'enable_summary': False,
}
# pylint: enable=line-too-long