Spaces:
Sleeping
Sleeping
File size: 15,741 Bytes
5672777 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 |
# Copyright 2023 The TensorFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Data parser and processing for Mask R-CNN."""
import tensorflow as tf, tf_keras
from official.legacy.detection.dataloader import anchor
from official.legacy.detection.dataloader import mode_keys as ModeKeys
from official.legacy.detection.dataloader import tf_example_decoder
from official.legacy.detection.utils import box_utils
from official.legacy.detection.utils import dataloader_utils
from official.legacy.detection.utils import input_utils
class Parser(object):
"""Parser to parse an image and its annotations into a dictionary of tensors."""
def __init__(self,
output_size,
min_level,
max_level,
num_scales,
aspect_ratios,
anchor_size,
rpn_match_threshold=0.7,
rpn_unmatched_threshold=0.3,
rpn_batch_size_per_im=256,
rpn_fg_fraction=0.5,
aug_rand_hflip=False,
aug_scale_min=1.0,
aug_scale_max=1.0,
skip_crowd_during_training=True,
max_num_instances=100,
include_mask=False,
mask_crop_size=112,
use_bfloat16=True,
mode=None):
"""Initializes parameters for parsing annotations in the dataset.
Args:
output_size: `Tensor` or `list` for [height, width] of output image. The
output_size should be divided by the largest feature stride 2^max_level.
min_level: `int` number of minimum level of the output feature pyramid.
max_level: `int` number of maximum level of the output feature pyramid.
num_scales: `int` number representing intermediate scales added
on each level. For instances, num_scales=2 adds one additional
intermediate anchor scales [2^0, 2^0.5] on each level.
aspect_ratios: `list` of float numbers representing the aspect raito
anchors added on each level. The number indicates the ratio of width to
height. For instances, aspect_ratios=[1.0, 2.0, 0.5] adds three anchors
on each scale level.
anchor_size: `float` number representing the scale of size of the base
anchor to the feature stride 2^level.
rpn_match_threshold:
rpn_unmatched_threshold:
rpn_batch_size_per_im:
rpn_fg_fraction:
aug_rand_hflip: `bool`, if True, augment training with random
horizontal flip.
aug_scale_min: `float`, the minimum scale applied to `output_size` for
data augmentation during training.
aug_scale_max: `float`, the maximum scale applied to `output_size` for
data augmentation during training.
skip_crowd_during_training: `bool`, if True, skip annotations labeled with
`is_crowd` equals to 1.
max_num_instances: `int` number of maximum number of instances in an
image. The groundtruth data will be padded to `max_num_instances`.
include_mask: a bool to indicate whether parse mask groundtruth.
mask_crop_size: the size which groundtruth mask is cropped to.
use_bfloat16: `bool`, if True, cast output image to tf.bfloat16.
mode: a ModeKeys. Specifies if this is training, evaluation, prediction
or prediction with groundtruths in the outputs.
"""
self._mode = mode
self._max_num_instances = max_num_instances
self._skip_crowd_during_training = skip_crowd_during_training
self._is_training = (mode == ModeKeys.TRAIN)
self._example_decoder = tf_example_decoder.TfExampleDecoder(
include_mask=include_mask)
# Anchor.
self._output_size = output_size
self._min_level = min_level
self._max_level = max_level
self._num_scales = num_scales
self._aspect_ratios = aspect_ratios
self._anchor_size = anchor_size
# Target assigning.
self._rpn_match_threshold = rpn_match_threshold
self._rpn_unmatched_threshold = rpn_unmatched_threshold
self._rpn_batch_size_per_im = rpn_batch_size_per_im
self._rpn_fg_fraction = rpn_fg_fraction
# Data augmentation.
self._aug_rand_hflip = aug_rand_hflip
self._aug_scale_min = aug_scale_min
self._aug_scale_max = aug_scale_max
# Mask.
self._include_mask = include_mask
self._mask_crop_size = mask_crop_size
# Device.
self._use_bfloat16 = use_bfloat16
# Data is parsed depending on the model Modekey.
if mode == ModeKeys.TRAIN:
self._parse_fn = self._parse_train_data
elif mode == ModeKeys.EVAL:
self._parse_fn = self._parse_eval_data
elif mode == ModeKeys.PREDICT or mode == ModeKeys.PREDICT_WITH_GT:
self._parse_fn = self._parse_predict_data
else:
raise ValueError('mode is not defined.')
def __call__(self, value):
"""Parses data to an image and associated training labels.
Args:
value: a string tensor holding a serialized tf.Example proto.
Returns:
image, labels: if mode == ModeKeys.TRAIN. see _parse_train_data.
{'images': image, 'labels': labels}: if mode == ModeKeys.PREDICT
or ModeKeys.PREDICT_WITH_GT.
"""
with tf.name_scope('parser'):
data = self._example_decoder.decode(value)
return self._parse_fn(data)
def _parse_train_data(self, data):
"""Parses data for training.
Args:
data: the decoded tensor dictionary from TfExampleDecoder.
Returns:
image: image tensor that is preproessed to have normalized value and
dimension [output_size[0], output_size[1], 3]
labels: a dictionary of tensors used for training. The following describes
{key: value} pairs in the dictionary.
image_info: a 2D `Tensor` that encodes the information of the image and
the applied preprocessing. It is in the format of
[[original_height, original_width], [scaled_height, scaled_width],
anchor_boxes: ordered dictionary with keys
[min_level, min_level+1, ..., max_level]. The values are tensor with
shape [height_l, width_l, 4] representing anchor boxes at each level.
rpn_score_targets: ordered dictionary with keys
[min_level, min_level+1, ..., max_level]. The values are tensor with
shape [height_l, width_l, anchors_per_location]. The height_l and
width_l represent the dimension of class logits at l-th level.
rpn_box_targets: ordered dictionary with keys
[min_level, min_level+1, ..., max_level]. The values are tensor with
shape [height_l, width_l, anchors_per_location * 4]. The height_l and
width_l represent the dimension of bounding box regression output at
l-th level.
gt_boxes: Groundtruth bounding box annotations. The box is represented
in [y1, x1, y2, x2] format. The coordinates are w.r.t the scaled
image that is fed to the network. The tennsor is padded with -1 to
the fixed dimension [self._max_num_instances, 4].
gt_classes: Groundtruth classes annotations. The tennsor is padded
with -1 to the fixed dimension [self._max_num_instances].
gt_masks: groundtrugh masks cropped by the bounding box and
resized to a fixed size determined by mask_crop_size.
"""
classes = data['groundtruth_classes']
boxes = data['groundtruth_boxes']
if self._include_mask:
masks = data['groundtruth_instance_masks']
is_crowds = data['groundtruth_is_crowd']
# Skips annotations with `is_crowd` = True.
if self._skip_crowd_during_training and self._is_training:
num_groundtruths = tf.shape(classes)[0]
with tf.control_dependencies([num_groundtruths, is_crowds]):
indices = tf.cond(
tf.greater(tf.size(is_crowds), 0),
lambda: tf.where(tf.logical_not(is_crowds))[:, 0],
lambda: tf.cast(tf.range(num_groundtruths), tf.int64))
classes = tf.gather(classes, indices)
boxes = tf.gather(boxes, indices)
if self._include_mask:
masks = tf.gather(masks, indices)
# Gets original image and its size.
image = data['image']
image_shape = tf.shape(image)[0:2]
# Normalizes image with mean and std pixel values.
image = input_utils.normalize_image(image)
# Flips image randomly during training.
if self._aug_rand_hflip:
if self._include_mask:
image, boxes, masks = input_utils.random_horizontal_flip(
image, boxes, masks)
else:
image, boxes = input_utils.random_horizontal_flip(
image, boxes)
# Converts boxes from normalized coordinates to pixel coordinates.
# Now the coordinates of boxes are w.r.t. the original image.
boxes = box_utils.denormalize_boxes(boxes, image_shape)
# Resizes and crops image.
image, image_info = input_utils.resize_and_crop_image(
image,
self._output_size,
padded_size=input_utils.compute_padded_size(
self._output_size, 2 ** self._max_level),
aug_scale_min=self._aug_scale_min,
aug_scale_max=self._aug_scale_max)
image_height, image_width, _ = image.get_shape().as_list()
# Resizes and crops boxes.
# Now the coordinates of boxes are w.r.t the scaled image.
image_scale = image_info[2, :]
offset = image_info[3, :]
boxes = input_utils.resize_and_crop_boxes(
boxes, image_scale, image_info[1, :], offset)
# Filters out ground truth boxes that are all zeros.
indices = box_utils.get_non_empty_box_indices(boxes)
boxes = tf.gather(boxes, indices)
classes = tf.gather(classes, indices)
if self._include_mask:
masks = tf.gather(masks, indices)
# Transfer boxes to the original image space and do normalization.
cropped_boxes = boxes + tf.tile(tf.expand_dims(offset, axis=0), [1, 2])
cropped_boxes /= tf.tile(tf.expand_dims(image_scale, axis=0), [1, 2])
cropped_boxes = box_utils.normalize_boxes(cropped_boxes, image_shape)
num_masks = tf.shape(masks)[0]
masks = tf.image.crop_and_resize(
tf.expand_dims(masks, axis=-1),
cropped_boxes,
box_indices=tf.range(num_masks, dtype=tf.int32),
crop_size=[self._mask_crop_size, self._mask_crop_size],
method='bilinear')
masks = tf.squeeze(masks, axis=-1)
# Assigns anchor targets.
# Note that after the target assignment, box targets are absolute pixel
# offsets w.r.t. the scaled image.
input_anchor = anchor.Anchor(
self._min_level,
self._max_level,
self._num_scales,
self._aspect_ratios,
self._anchor_size,
(image_height, image_width))
anchor_labeler = anchor.RpnAnchorLabeler(
input_anchor,
self._rpn_match_threshold,
self._rpn_unmatched_threshold,
self._rpn_batch_size_per_im,
self._rpn_fg_fraction)
rpn_score_targets, rpn_box_targets = anchor_labeler.label_anchors(
boxes, tf.cast(tf.expand_dims(classes, axis=-1), dtype=tf.float32))
# If bfloat16 is used, casts input image to tf.bfloat16.
if self._use_bfloat16:
image = tf.cast(image, dtype=tf.bfloat16)
inputs = {
'image': image,
'image_info': image_info,
}
# Packs labels for model_fn outputs.
labels = {
'anchor_boxes': input_anchor.multilevel_boxes,
'image_info': image_info,
'rpn_score_targets': rpn_score_targets,
'rpn_box_targets': rpn_box_targets,
}
inputs['gt_boxes'] = input_utils.pad_to_fixed_size(boxes,
self._max_num_instances,
-1)
inputs['gt_classes'] = input_utils.pad_to_fixed_size(
classes, self._max_num_instances, -1)
if self._include_mask:
inputs['gt_masks'] = input_utils.pad_to_fixed_size(
masks, self._max_num_instances, -1)
return inputs, labels
def _parse_eval_data(self, data):
"""Parses data for evaluation."""
raise NotImplementedError('Not implemented!')
def _parse_predict_data(self, data):
"""Parses data for prediction.
Args:
data: the decoded tensor dictionary from TfExampleDecoder.
Returns:
A dictionary of {'images': image, 'labels': labels} where
image: image tensor that is preproessed to have normalized value and
dimension [output_size[0], output_size[1], 3]
labels: a dictionary of tensors used for training. The following
describes {key: value} pairs in the dictionary.
source_ids: Source image id. Default value -1 if the source id is
empty in the groundtruth annotation.
image_info: a 2D `Tensor` that encodes the information of the image
and the applied preprocessing. It is in the format of
[[original_height, original_width], [scaled_height, scaled_width],
anchor_boxes: ordered dictionary with keys
[min_level, min_level+1, ..., max_level]. The values are tensor with
shape [height_l, width_l, 4] representing anchor boxes at each
level.
"""
# Gets original image and its size.
image = data['image']
image_shape = tf.shape(image)[0:2]
# Normalizes image with mean and std pixel values.
image = input_utils.normalize_image(image)
# Resizes and crops image.
image, image_info = input_utils.resize_and_crop_image(
image,
self._output_size,
padded_size=input_utils.compute_padded_size(
self._output_size, 2 ** self._max_level),
aug_scale_min=1.0,
aug_scale_max=1.0)
image_height, image_width, _ = image.get_shape().as_list()
# If bfloat16 is used, casts input image to tf.bfloat16.
if self._use_bfloat16:
image = tf.cast(image, dtype=tf.bfloat16)
# Compute Anchor boxes.
_ = anchor.Anchor(self._min_level, self._max_level, self._num_scales,
self._aspect_ratios, self._anchor_size,
(image_height, image_width))
labels = {
'image_info': image_info,
}
if self._mode == ModeKeys.PREDICT_WITH_GT:
# Converts boxes from normalized coordinates to pixel coordinates.
boxes = box_utils.denormalize_boxes(
data['groundtruth_boxes'], image_shape)
groundtruths = {
'source_id': data['source_id'],
'height': data['height'],
'width': data['width'],
'num_detections': tf.shape(data['groundtruth_classes']),
'boxes': boxes,
'classes': data['groundtruth_classes'],
'areas': data['groundtruth_area'],
'is_crowds': tf.cast(data['groundtruth_is_crowd'], tf.int32),
}
groundtruths['source_id'] = dataloader_utils.process_source_id(
groundtruths['source_id'])
groundtruths = dataloader_utils.pad_groundtruths_to_fixed_size(
groundtruths, self._max_num_instances)
# TODO(yeqing): Remove the `groundtrtuh` layer key (no longer needed).
labels['groundtruths'] = groundtruths
inputs = {
'image': image,
'image_info': image_info,
}
return inputs, labels
|