File size: 14,228 Bytes
5672777
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
# Copyright 2023 The TensorFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

"""Data parser and processing for Mask R-CNN."""

import tensorflow as tf, tf_keras

from official.legacy.detection.dataloader import anchor
from official.legacy.detection.dataloader.maskrcnn_parser import Parser as MaskrcnnParser
from official.legacy.detection.utils import box_utils
from official.legacy.detection.utils import class_utils
from official.legacy.detection.utils import input_utils


class Parser(MaskrcnnParser):
  """Parser to parse an image and its annotations into a dictionary of tensors."""

  def __init__(self,
               output_size,
               min_level,
               max_level,
               num_scales,
               aspect_ratios,
               anchor_size,
               rpn_match_threshold=0.7,
               rpn_unmatched_threshold=0.3,
               rpn_batch_size_per_im=256,
               rpn_fg_fraction=0.5,
               aug_rand_hflip=False,
               aug_scale_min=1.0,
               aug_scale_max=1.0,
               skip_crowd_during_training=True,
               max_num_instances=100,
               include_mask=False,
               mask_crop_size=112,
               use_bfloat16=True,
               mode=None,
               # for centerness learning.
               has_centerness=False,
               rpn_center_match_iou_threshold=0.3,
               rpn_center_unmatched_iou_threshold=0.1,
               rpn_num_center_samples_per_im=256,
               # for class manipulation.
               class_agnostic=False,
               train_class='all',
               ):
    """Initializes parameters for parsing annotations in the dataset.

    Args:
      output_size: `Tensor` or `list` for [height, width] of output image. The
        output_size should be divided by the largest feature stride 2^max_level.
      min_level: `int` number of minimum level of the output feature pyramid.
      max_level: `int` number of maximum level of the output feature pyramid.
      num_scales: `int` number representing intermediate scales added
        on each level. For instances, num_scales=2 adds one additional
        intermediate anchor scales [2^0, 2^0.5] on each level.
      aspect_ratios: `list` of float numbers representing the aspect raito
        anchors added on each level. The number indicates the ratio of width to
        height. For instances, aspect_ratios=[1.0, 2.0, 0.5] adds three anchors
        on each scale level.
      anchor_size: `float` number representing the scale of size of the base
        anchor to the feature stride 2^level.
      rpn_match_threshold:
      rpn_unmatched_threshold:
      rpn_batch_size_per_im:
      rpn_fg_fraction:
      aug_rand_hflip: `bool`, if True, augment training with random
        horizontal flip.
      aug_scale_min: `float`, the minimum scale applied to `output_size` for
        data augmentation during training.
      aug_scale_max: `float`, the maximum scale applied to `output_size` for
        data augmentation during training.
      skip_crowd_during_training: `bool`, if True, skip annotations labeled with
        `is_crowd` equals to 1.
      max_num_instances: `int` number of maximum number of instances in an
        image. The groundtruth data will be padded to `max_num_instances`.
      include_mask: a bool to indicate whether parse mask groundtruth.
      mask_crop_size: the size which groundtruth mask is cropped to.
      use_bfloat16: `bool`, if True, cast output image to tf.bfloat16.
      mode: a ModeKeys. Specifies if this is training, evaluation, prediction
        or prediction with groundtruths in the outputs.
      has_centerness: whether to create centerness targets
      rpn_center_match_iou_threshold: iou threshold for valid centerness samples
        ,set to 0.3 by default.
      rpn_center_unmatched_iou_threshold: iou threshold for invalid centerness
        samples, set to 0.1 by default.
      rpn_num_center_samples_per_im: number of centerness samples per image,
        256 by default.
      class_agnostic: whether to merge class ids into one foreground(=1) class,
        False by default.
      train_class: 'all' or 'voc' or 'nonvoc', 'all' by default.
    """
    super(Parser, self).__init__(
        output_size=output_size,
        min_level=min_level,
        max_level=max_level,
        num_scales=num_scales,
        aspect_ratios=aspect_ratios,
        anchor_size=anchor_size,
        rpn_match_threshold=rpn_match_threshold,
        rpn_unmatched_threshold=rpn_unmatched_threshold,
        rpn_batch_size_per_im=rpn_batch_size_per_im,
        rpn_fg_fraction=rpn_fg_fraction,
        aug_rand_hflip=aug_rand_hflip,
        aug_scale_min=aug_scale_min,
        aug_scale_max=aug_scale_max,
        skip_crowd_during_training=skip_crowd_during_training,
        max_num_instances=max_num_instances,
        include_mask=include_mask,
        mask_crop_size=mask_crop_size,
        use_bfloat16=use_bfloat16,
        mode=mode,)

    # Centerness target assigning.
    self._has_centerness = has_centerness
    self._rpn_center_match_iou_threshold = rpn_center_match_iou_threshold
    self._rpn_center_unmatched_iou_threshold = (
        rpn_center_unmatched_iou_threshold)
    self._rpn_num_center_samples_per_im = rpn_num_center_samples_per_im

    # Class manipulation.
    self._class_agnostic = class_agnostic
    self._train_class = train_class

  def _parse_train_data(self, data):
    """Parses data for training.

    Args:
      data: the decoded tensor dictionary from TfExampleDecoder.

    Returns:
      image: image tensor that is preproessed to have normalized value and
        dimension [output_size[0], output_size[1], 3]
      labels: a dictionary of tensors used for training. The following describes
        {key: value} pairs in the dictionary.
        image_info: a 2D `Tensor` that encodes the information of the image and
          the applied preprocessing. It is in the format of
          [[original_height, original_width], [scaled_height, scaled_width],
        anchor_boxes: ordered dictionary with keys
          [min_level, min_level+1, ..., max_level]. The values are tensor with
          shape [height_l, width_l, 4] representing anchor boxes at each level.
        rpn_score_targets: ordered dictionary with keys
          [min_level, min_level+1, ..., max_level]. The values are tensor with
          shape [height_l, width_l, anchors_per_location]. The height_l and
          width_l represent the dimension of class logits at l-th level.
        rpn_box_targets: ordered dictionary with keys
          [min_level, min_level+1, ..., max_level]. The values are tensor with
          shape [height_l, width_l, anchors_per_location * 4]. The height_l and
          width_l represent the dimension of bounding box regression output at
          l-th level.
        gt_boxes: Groundtruth bounding box annotations. The box is represented
           in [y1, x1, y2, x2] format. The coordinates are w.r.t the scaled
           image that is fed to the network. The tennsor is padded with -1 to
           the fixed dimension [self._max_num_instances, 4].
        gt_classes: Groundtruth classes annotations. The tennsor is padded
          with -1 to the fixed dimension [self._max_num_instances].
        gt_masks: groundtrugh masks cropped by the bounding box and
          resized to a fixed size determined by mask_crop_size.
    """
    classes = data['groundtruth_classes']
    boxes = data['groundtruth_boxes']
    if self._include_mask:
      masks = data['groundtruth_instance_masks']

    is_crowds = data['groundtruth_is_crowd']
    # Skips annotations with `is_crowd` = True.
    if self._skip_crowd_during_training and self._is_training:
      num_groundtruths = tf.shape(classes)[0]
      with tf.control_dependencies([num_groundtruths, is_crowds]):
        indices = tf.cond(
            tf.greater(tf.size(is_crowds), 0),
            lambda: tf.where(tf.logical_not(is_crowds))[:, 0],
            lambda: tf.cast(tf.range(num_groundtruths), tf.int64))
      classes = tf.gather(classes, indices)
      boxes = tf.gather(boxes, indices)
      if self._include_mask:
        masks = tf.gather(masks, indices)

    # Gets original image and its size.
    image = data['image']
    image_shape = tf.shape(image)[0:2]

    # Normalizes image with mean and std pixel values.
    image = input_utils.normalize_image(image)

    # Flips image randomly during training.
    if self._aug_rand_hflip:
      if self._include_mask:
        image, boxes, masks = input_utils.random_horizontal_flip(
            image, boxes, masks)
      else:
        image, boxes = input_utils.random_horizontal_flip(
            image, boxes)

    # Converts boxes from normalized coordinates to pixel coordinates.
    # Now the coordinates of boxes are w.r.t. the original image.
    boxes = box_utils.denormalize_boxes(boxes, image_shape)

    # Resizes and crops image.
    image, image_info = input_utils.resize_and_crop_image(
        image,
        self._output_size,
        padded_size=input_utils.compute_padded_size(
            self._output_size, 2 ** self._max_level),
        aug_scale_min=self._aug_scale_min,
        aug_scale_max=self._aug_scale_max)
    image_height, image_width, _ = image.get_shape().as_list()

    # Resizes and crops boxes.
    # Now the coordinates of boxes are w.r.t the scaled image.
    image_scale = image_info[2, :]
    offset = image_info[3, :]
    boxes = input_utils.resize_and_crop_boxes(
        boxes, image_scale, image_info[1, :], offset)

    # Filters out ground truth boxes that are all zeros.
    indices = box_utils.get_non_empty_box_indices(boxes)
    boxes = tf.gather(boxes, indices)
    classes = tf.gather(classes, indices)
    if self._include_mask:
      masks = tf.gather(masks, indices)
      # Transfer boxes to the original image space and do normalization.
      cropped_boxes = boxes + tf.tile(tf.expand_dims(offset, axis=0), [1, 2])
      cropped_boxes /= tf.tile(tf.expand_dims(image_scale, axis=0), [1, 2])
      cropped_boxes = box_utils.normalize_boxes(cropped_boxes, image_shape)
      num_masks = tf.shape(masks)[0]
      masks = tf.image.crop_and_resize(
          tf.expand_dims(masks, axis=-1),
          cropped_boxes,
          box_indices=tf.range(num_masks, dtype=tf.int32),
          crop_size=[self._mask_crop_size, self._mask_crop_size],
          method='bilinear')
      masks = tf.squeeze(masks, axis=-1)

    # Class manipulation.
    # Filter out novel split classes from training.
    if self._train_class != 'all':
      valid_classes = tf.cast(
          class_utils.coco_split_class_ids(self._train_class),
          dtype=classes.dtype)
      match = tf.reduce_any(tf.equal(
          tf.expand_dims(valid_classes, 1),
          tf.expand_dims(classes, 0)), 0)
      # kill novel split classes and boxes.
      boxes = tf.gather(boxes, tf.where(match)[:, 0])
      classes = tf.gather(classes, tf.where(match)[:, 0])
      if self._include_mask:
        masks = tf.gather(masks, tf.where(match)[:, 0])

    # Assigns anchor targets.
    # Note that after the target assignment, box targets are absolute pixel
    # offsets w.r.t. the scaled image.
    input_anchor = anchor.Anchor(
        self._min_level,
        self._max_level,
        self._num_scales,
        self._aspect_ratios,
        self._anchor_size,
        (image_height, image_width))
    anchor_labeler = anchor.OlnAnchorLabeler(
        input_anchor,
        self._rpn_match_threshold,
        self._rpn_unmatched_threshold,
        self._rpn_batch_size_per_im,
        self._rpn_fg_fraction,
        # for centerness target.
        self._has_centerness,
        self._rpn_center_match_iou_threshold,
        self._rpn_center_unmatched_iou_threshold,
        self._rpn_num_center_samples_per_im,)

    if self._has_centerness:
      rpn_score_targets, _, rpn_lrtb_targets, rpn_center_targets = (
          anchor_labeler.label_anchors_lrtb(
              gt_boxes=boxes,
              gt_labels=tf.cast(
                  tf.expand_dims(classes, axis=-1), dtype=tf.float32)))
    else:
      rpn_score_targets, rpn_box_targets = anchor_labeler.label_anchors(
          boxes, tf.cast(tf.expand_dims(classes, axis=-1), dtype=tf.float32))
      # For base rpn, dummy placeholder for centerness target.
      rpn_center_targets = rpn_score_targets.copy()

    # If bfloat16 is used, casts input image to tf.bfloat16.
    if self._use_bfloat16:
      image = tf.cast(image, dtype=tf.bfloat16)

    inputs = {
        'image': image,
        'image_info': image_info,
    }
    # Packs labels for model_fn outputs.
    labels = {
        'anchor_boxes': input_anchor.multilevel_boxes,
        'image_info': image_info,
        'rpn_score_targets': rpn_score_targets,
        'rpn_box_targets': (rpn_lrtb_targets if self._has_centerness
                            else rpn_box_targets),
        'rpn_center_targets': rpn_center_targets,
    }
    # If class_agnostic, convert to binary classes.
    if self._class_agnostic:
      classes = tf.where(tf.greater(classes, 0),
                         tf.ones_like(classes),
                         tf.zeros_like(classes))

    inputs['gt_boxes'] = input_utils.pad_to_fixed_size(boxes,
                                                       self._max_num_instances,
                                                       -1)
    inputs['gt_classes'] = input_utils.pad_to_fixed_size(
        classes, self._max_num_instances, -1)
    if self._include_mask:
      inputs['gt_masks'] = input_utils.pad_to_fixed_size(
          masks, self._max_num_instances, -1)

    return inputs, labels