Spaces:
Sleeping
Sleeping
File size: 18,293 Bytes
5672777 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 |
# Copyright 2023 The TensorFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Data parser and processing.
Parse image and ground truths in a dataset to training targets and package them
into (image, labels) tuple for RetinaNet.
T.-Y. Lin, P. Goyal, R. Girshick, K. He, and P. Dollar
Focal Loss for Dense Object Detection. arXiv:1708.02002
"""
import tensorflow as tf, tf_keras
from official.legacy.detection.dataloader import anchor
from official.legacy.detection.dataloader import mode_keys as ModeKeys
from official.legacy.detection.dataloader import tf_example_decoder
from official.legacy.detection.utils import box_utils
from official.legacy.detection.utils import input_utils
def process_source_id(source_id):
"""Processes source_id to the right format."""
if source_id.dtype == tf.string:
source_id = tf.cast(tf.strings.to_number(source_id), tf.int32)
with tf.control_dependencies([source_id]):
source_id = tf.cond(
pred=tf.equal(tf.size(input=source_id), 0),
true_fn=lambda: tf.cast(tf.constant(-1), tf.int32),
false_fn=lambda: tf.identity(source_id))
return source_id
def pad_groundtruths_to_fixed_size(gt, n):
"""Pads the first dimension of groundtruths labels to the fixed size."""
gt['boxes'] = input_utils.pad_to_fixed_size(gt['boxes'], n, -1)
gt['is_crowds'] = input_utils.pad_to_fixed_size(gt['is_crowds'], n, 0)
gt['areas'] = input_utils.pad_to_fixed_size(gt['areas'], n, -1)
gt['classes'] = input_utils.pad_to_fixed_size(gt['classes'], n, -1)
return gt
class Parser(object):
"""Parser to parse an image and its annotations into a dictionary of tensors."""
def __init__(self,
output_size,
min_level,
max_level,
num_scales,
aspect_ratios,
anchor_size,
match_threshold=0.5,
unmatched_threshold=0.5,
aug_rand_hflip=False,
aug_scale_min=1.0,
aug_scale_max=1.0,
use_autoaugment=False,
autoaugment_policy_name='v0',
skip_crowd_during_training=True,
max_num_instances=100,
use_bfloat16=True,
mode=None):
"""Initializes parameters for parsing annotations in the dataset.
Args:
output_size: `Tensor` or `list` for [height, width] of output image. The
output_size should be divided by the largest feature stride 2^max_level.
min_level: `int` number of minimum level of the output feature pyramid.
max_level: `int` number of maximum level of the output feature pyramid.
num_scales: `int` number representing intermediate scales added on each
level. For instances, num_scales=2 adds one additional intermediate
anchor scales [2^0, 2^0.5] on each level.
aspect_ratios: `list` of float numbers representing the aspect raito
anchors added on each level. The number indicates the ratio of width to
height. For instances, aspect_ratios=[1.0, 2.0, 0.5] adds three anchors
on each scale level.
anchor_size: `float` number representing the scale of size of the base
anchor to the feature stride 2^level.
match_threshold: `float` number between 0 and 1 representing the
lower-bound threshold to assign positive labels for anchors. An anchor
with a score over the threshold is labeled positive.
unmatched_threshold: `float` number between 0 and 1 representing the
upper-bound threshold to assign negative labels for anchors. An anchor
with a score below the threshold is labeled negative.
aug_rand_hflip: `bool`, if True, augment training with random horizontal
flip.
aug_scale_min: `float`, the minimum scale applied to `output_size` for
data augmentation during training.
aug_scale_max: `float`, the maximum scale applied to `output_size` for
data augmentation during training.
use_autoaugment: `bool`, if True, use the AutoAugment augmentation policy
during training.
autoaugment_policy_name: `string` that specifies the name of the
AutoAugment policy that will be used during training.
skip_crowd_during_training: `bool`, if True, skip annotations labeled with
`is_crowd` equals to 1.
max_num_instances: `int` number of maximum number of instances in an
image. The groundtruth data will be padded to `max_num_instances`.
use_bfloat16: `bool`, if True, cast output image to tf.bfloat16.
mode: a ModeKeys. Specifies if this is training, evaluation, prediction or
prediction with groundtruths in the outputs.
"""
self._mode = mode
self._max_num_instances = max_num_instances
self._skip_crowd_during_training = skip_crowd_during_training
self._is_training = (mode == ModeKeys.TRAIN)
self._example_decoder = tf_example_decoder.TfExampleDecoder(
include_mask=False)
# Anchor.
self._output_size = output_size
self._min_level = min_level
self._max_level = max_level
self._num_scales = num_scales
self._aspect_ratios = aspect_ratios
self._anchor_size = anchor_size
self._match_threshold = match_threshold
self._unmatched_threshold = unmatched_threshold
# Data augmentation.
self._aug_rand_hflip = aug_rand_hflip
self._aug_scale_min = aug_scale_min
self._aug_scale_max = aug_scale_max
# Data Augmentation with AutoAugment.
self._use_autoaugment = use_autoaugment
self._autoaugment_policy_name = autoaugment_policy_name
# Device.
self._use_bfloat16 = use_bfloat16
# Data is parsed depending on the model Modekey.
if mode == ModeKeys.TRAIN:
self._parse_fn = self._parse_train_data
elif mode == ModeKeys.EVAL:
self._parse_fn = self._parse_eval_data
elif mode == ModeKeys.PREDICT or mode == ModeKeys.PREDICT_WITH_GT:
self._parse_fn = self._parse_predict_data
else:
raise ValueError('mode is not defined.')
def __call__(self, value):
"""Parses data to an image and associated training labels.
Args:
value: a string tensor holding a serialized tf.Example proto.
Returns:
image: image tensor that is preproessed to have normalized value and
dimension [output_size[0], output_size[1], 3]
labels:
cls_targets: ordered dictionary with keys
[min_level, min_level+1, ..., max_level]. The values are tensor with
shape [height_l, width_l, anchors_per_location]. The height_l and
width_l represent the dimension of class logits at l-th level.
box_targets: ordered dictionary with keys
[min_level, min_level+1, ..., max_level]. The values are tensor with
shape [height_l, width_l, anchors_per_location * 4]. The height_l and
width_l represent the dimension of bounding box regression output at
l-th level.
num_positives: number of positive anchors in the image.
anchor_boxes: ordered dictionary with keys
[min_level, min_level+1, ..., max_level]. The values are tensor with
shape [height_l, width_l, 4] representing anchor boxes at each level.
image_info: a 2D `Tensor` that encodes the information of the image and
the applied preprocessing. It is in the format of
[[original_height, original_width], [scaled_height, scaled_width],
[y_scale, x_scale], [y_offset, x_offset]].
groundtruths:
source_id: source image id. Default value -1 if the source id is empty
in the groundtruth annotation.
boxes: groundtruth bounding box annotations. The box is represented in
[y1, x1, y2, x2] format. The tennsor is padded with -1 to the fixed
dimension [self._max_num_instances, 4].
classes: groundtruth classes annotations. The tennsor is padded with
-1 to the fixed dimension [self._max_num_instances].
areas: groundtruth areas annotations. The tennsor is padded with -1
to the fixed dimension [self._max_num_instances].
is_crowds: groundtruth annotations to indicate if an annotation
represents a group of instances by value {0, 1}. The tennsor is
padded with 0 to the fixed dimension [self._max_num_instances].
"""
with tf.name_scope('parser'):
data = self._example_decoder.decode(value)
return self._parse_fn(data)
def _parse_train_data(self, data):
"""Parses data for training and evaluation."""
classes = data['groundtruth_classes']
boxes = data['groundtruth_boxes']
is_crowds = data['groundtruth_is_crowd']
# Skips annotations with `is_crowd` = True.
if self._skip_crowd_during_training and self._is_training:
num_groundtrtuhs = tf.shape(input=classes)[0]
with tf.control_dependencies([num_groundtrtuhs, is_crowds]):
indices = tf.cond(
pred=tf.greater(tf.size(input=is_crowds), 0),
true_fn=lambda: tf.where(tf.logical_not(is_crowds))[:, 0],
false_fn=lambda: tf.cast(tf.range(num_groundtrtuhs), tf.int64))
classes = tf.gather(classes, indices)
boxes = tf.gather(boxes, indices)
# Gets original image and its size.
image = data['image']
image_shape = tf.shape(input=image)[0:2]
# Normalizes image with mean and std pixel values.
image = input_utils.normalize_image(image)
# Flips image randomly during training.
if self._aug_rand_hflip:
image, boxes = input_utils.random_horizontal_flip(image, boxes)
# Converts boxes from normalized coordinates to pixel coordinates.
boxes = box_utils.denormalize_boxes(boxes, image_shape)
# Resizes and crops image.
image, image_info = input_utils.resize_and_crop_image(
image,
self._output_size,
padded_size=input_utils.compute_padded_size(self._output_size,
2**self._max_level),
aug_scale_min=self._aug_scale_min,
aug_scale_max=self._aug_scale_max)
image_height, image_width, _ = image.get_shape().as_list()
# Resizes and crops boxes.
image_scale = image_info[2, :]
offset = image_info[3, :]
boxes = input_utils.resize_and_crop_boxes(boxes, image_scale,
image_info[1, :], offset)
# Filters out ground truth boxes that are all zeros.
indices = box_utils.get_non_empty_box_indices(boxes)
boxes = tf.gather(boxes, indices)
classes = tf.gather(classes, indices)
# Assigns anchors.
input_anchor = anchor.Anchor(self._min_level, self._max_level,
self._num_scales, self._aspect_ratios,
self._anchor_size, (image_height, image_width))
anchor_labeler = anchor.AnchorLabeler(input_anchor, self._match_threshold,
self._unmatched_threshold)
(cls_targets, box_targets, num_positives) = anchor_labeler.label_anchors(
boxes, tf.cast(tf.expand_dims(classes, axis=1), tf.float32))
# If bfloat16 is used, casts input image to tf.bfloat16.
if self._use_bfloat16:
image = tf.cast(image, dtype=tf.bfloat16)
# Packs labels for model_fn outputs.
labels = {
'cls_targets': cls_targets,
'box_targets': box_targets,
'anchor_boxes': input_anchor.multilevel_boxes,
'num_positives': num_positives,
'image_info': image_info,
}
return image, labels
def _parse_eval_data(self, data):
"""Parses data for training and evaluation."""
groundtruths = {}
classes = data['groundtruth_classes']
boxes = data['groundtruth_boxes']
# Gets original image and its size.
image = data['image']
image_shape = tf.shape(input=image)[0:2]
# Normalizes image with mean and std pixel values.
image = input_utils.normalize_image(image)
# Converts boxes from normalized coordinates to pixel coordinates.
boxes = box_utils.denormalize_boxes(boxes, image_shape)
# Resizes and crops image.
image, image_info = input_utils.resize_and_crop_image(
image,
self._output_size,
padded_size=input_utils.compute_padded_size(self._output_size,
2**self._max_level),
aug_scale_min=1.0,
aug_scale_max=1.0)
image_height, image_width, _ = image.get_shape().as_list()
# Resizes and crops boxes.
image_scale = image_info[2, :]
offset = image_info[3, :]
boxes = input_utils.resize_and_crop_boxes(boxes, image_scale,
image_info[1, :], offset)
# Filters out ground truth boxes that are all zeros.
indices = box_utils.get_non_empty_box_indices(boxes)
boxes = tf.gather(boxes, indices)
classes = tf.gather(classes, indices)
# Assigns anchors.
input_anchor = anchor.Anchor(self._min_level, self._max_level,
self._num_scales, self._aspect_ratios,
self._anchor_size, (image_height, image_width))
anchor_labeler = anchor.AnchorLabeler(input_anchor, self._match_threshold,
self._unmatched_threshold)
(cls_targets, box_targets, num_positives) = anchor_labeler.label_anchors(
boxes, tf.cast(tf.expand_dims(classes, axis=1), tf.float32))
# If bfloat16 is used, casts input image to tf.bfloat16.
if self._use_bfloat16:
image = tf.cast(image, dtype=tf.bfloat16)
# Sets up groundtruth data for evaluation.
groundtruths = {
'source_id':
data['source_id'],
'num_groundtrtuhs':
tf.shape(data['groundtruth_classes']),
'image_info':
image_info,
'boxes':
box_utils.denormalize_boxes(data['groundtruth_boxes'], image_shape),
'classes':
data['groundtruth_classes'],
'areas':
data['groundtruth_area'],
'is_crowds':
tf.cast(data['groundtruth_is_crowd'], tf.int32),
}
groundtruths['source_id'] = process_source_id(groundtruths['source_id'])
groundtruths = pad_groundtruths_to_fixed_size(groundtruths,
self._max_num_instances)
# Packs labels for model_fn outputs.
labels = {
'cls_targets': cls_targets,
'box_targets': box_targets,
'anchor_boxes': input_anchor.multilevel_boxes,
'num_positives': num_positives,
'image_info': image_info,
'groundtruths': groundtruths,
}
return image, labels
def _parse_predict_data(self, data):
"""Parses data for prediction."""
# Gets original image and its size.
image = data['image']
image_shape = tf.shape(input=image)[0:2]
# Normalizes image with mean and std pixel values.
image = input_utils.normalize_image(image)
# Resizes and crops image.
image, image_info = input_utils.resize_and_crop_image(
image,
self._output_size,
padded_size=input_utils.compute_padded_size(self._output_size,
2**self._max_level),
aug_scale_min=1.0,
aug_scale_max=1.0)
image_height, image_width, _ = image.get_shape().as_list()
# If bfloat16 is used, casts input image to tf.bfloat16.
if self._use_bfloat16:
image = tf.cast(image, dtype=tf.bfloat16)
# Compute Anchor boxes.
input_anchor = anchor.Anchor(self._min_level, self._max_level,
self._num_scales, self._aspect_ratios,
self._anchor_size, (image_height, image_width))
labels = {
'anchor_boxes': input_anchor.multilevel_boxes,
'image_info': image_info,
}
# If mode is PREDICT_WITH_GT, returns groundtruths and training targets
# in labels.
if self._mode == ModeKeys.PREDICT_WITH_GT:
# Converts boxes from normalized coordinates to pixel coordinates.
boxes = box_utils.denormalize_boxes(data['groundtruth_boxes'],
image_shape)
groundtruths = {
'source_id': data['source_id'],
'num_detections': tf.shape(data['groundtruth_classes']),
'boxes': boxes,
'classes': data['groundtruth_classes'],
'areas': data['groundtruth_area'],
'is_crowds': tf.cast(data['groundtruth_is_crowd'], tf.int32),
}
groundtruths['source_id'] = process_source_id(groundtruths['source_id'])
groundtruths = pad_groundtruths_to_fixed_size(groundtruths,
self._max_num_instances)
labels['groundtruths'] = groundtruths
# Computes training objective for evaluation loss.
classes = data['groundtruth_classes']
image_scale = image_info[2, :]
offset = image_info[3, :]
boxes = input_utils.resize_and_crop_boxes(boxes, image_scale,
image_info[1, :], offset)
# Filters out ground truth boxes that are all zeros.
indices = box_utils.get_non_empty_box_indices(boxes)
boxes = tf.gather(boxes, indices)
# Assigns anchors.
anchor_labeler = anchor.AnchorLabeler(input_anchor, self._match_threshold,
self._unmatched_threshold)
(cls_targets, box_targets, num_positives) = anchor_labeler.label_anchors(
boxes, tf.cast(tf.expand_dims(classes, axis=1), tf.float32))
labels['cls_targets'] = cls_targets
labels['box_targets'] = box_targets
labels['num_positives'] = num_positives
return image, labels
|