File size: 6,229 Bytes
5672777
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
# Copyright 2023 The TensorFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.


"""Tensorflow Example proto decoder for object detection.

A decoder to decode string tensors containing serialized tensorflow.Example
protos for object detection.
"""
import tensorflow as tf, tf_keras


class TfExampleDecoder(object):
  """Tensorflow Example proto decoder."""

  def __init__(self, include_mask=False):
    self._include_mask = include_mask
    self._keys_to_features = {
        'image/encoded':
            tf.io.FixedLenFeature((), tf.string),
        'image/source_id':
            tf.io.FixedLenFeature((), tf.string),
        'image/height':
            tf.io.FixedLenFeature((), tf.int64),
        'image/width':
            tf.io.FixedLenFeature((), tf.int64),
        'image/object/bbox/xmin':
            tf.io.VarLenFeature(tf.float32),
        'image/object/bbox/xmax':
            tf.io.VarLenFeature(tf.float32),
        'image/object/bbox/ymin':
            tf.io.VarLenFeature(tf.float32),
        'image/object/bbox/ymax':
            tf.io.VarLenFeature(tf.float32),
        'image/object/class/label':
            tf.io.VarLenFeature(tf.int64),
        'image/object/area':
            tf.io.VarLenFeature(tf.float32),
        'image/object/is_crowd':
            tf.io.VarLenFeature(tf.int64),
    }
    if include_mask:
      self._keys_to_features.update({
          'image/object/mask':
              tf.io.VarLenFeature(tf.string),
      })

  def _decode_image(self, parsed_tensors):
    """Decodes the image and set its static shape."""
    image = tf.io.decode_image(parsed_tensors['image/encoded'], channels=3)
    image.set_shape([None, None, 3])
    return image

  def _decode_boxes(self, parsed_tensors):
    """Concat box coordinates in the format of [ymin, xmin, ymax, xmax]."""
    xmin = parsed_tensors['image/object/bbox/xmin']
    xmax = parsed_tensors['image/object/bbox/xmax']
    ymin = parsed_tensors['image/object/bbox/ymin']
    ymax = parsed_tensors['image/object/bbox/ymax']
    return tf.stack([ymin, xmin, ymax, xmax], axis=-1)

  def _decode_masks(self, parsed_tensors):
    """Decode a set of PNG masks to the tf.float32 tensors."""
    def _decode_png_mask(png_bytes):
      mask = tf.squeeze(
          tf.io.decode_png(png_bytes, channels=1, dtype=tf.uint8), axis=-1)
      mask = tf.cast(mask, dtype=tf.float32)
      mask.set_shape([None, None])
      return mask

    height = parsed_tensors['image/height']
    width = parsed_tensors['image/width']
    masks = parsed_tensors['image/object/mask']
    return tf.cond(
        pred=tf.greater(tf.size(input=masks), 0),
        true_fn=lambda: tf.map_fn(_decode_png_mask, masks, dtype=tf.float32),
        false_fn=lambda: tf.zeros([0, height, width], dtype=tf.float32))

  def _decode_areas(self, parsed_tensors):
    xmin = parsed_tensors['image/object/bbox/xmin']
    xmax = parsed_tensors['image/object/bbox/xmax']
    ymin = parsed_tensors['image/object/bbox/ymin']
    ymax = parsed_tensors['image/object/bbox/ymax']
    return tf.cond(
        tf.greater(tf.shape(parsed_tensors['image/object/area'])[0], 0),
        lambda: parsed_tensors['image/object/area'],
        lambda: (xmax - xmin) * (ymax - ymin))

  def decode(self, serialized_example):
    """Decode the serialized example.

    Args:
      serialized_example: a single serialized tf.Example string.

    Returns:
      decoded_tensors: a dictionary of tensors with the following fields:
        - image: a uint8 tensor of shape [None, None, 3].
        - source_id: a string scalar tensor.
        - height: an integer scalar tensor.
        - width: an integer scalar tensor.
        - groundtruth_classes: a int64 tensor of shape [None].
        - groundtruth_is_crowd: a bool tensor of shape [None].
        - groundtruth_area: a float32 tensor of shape [None].
        - groundtruth_boxes: a float32 tensor of shape [None, 4].
        - groundtruth_instance_masks: a float32 tensor of shape
            [None, None, None].
        - groundtruth_instance_masks_png: a string tensor of shape [None].
    """
    parsed_tensors = tf.io.parse_single_example(
        serialized=serialized_example, features=self._keys_to_features)
    for k in parsed_tensors:
      if isinstance(parsed_tensors[k], tf.SparseTensor):
        if parsed_tensors[k].dtype == tf.string:
          parsed_tensors[k] = tf.sparse.to_dense(
              parsed_tensors[k], default_value='')
        else:
          parsed_tensors[k] = tf.sparse.to_dense(
              parsed_tensors[k], default_value=0)

    image = self._decode_image(parsed_tensors)
    boxes = self._decode_boxes(parsed_tensors)
    areas = self._decode_areas(parsed_tensors)
    is_crowds = tf.cond(
        tf.greater(tf.shape(parsed_tensors['image/object/is_crowd'])[0], 0),
        lambda: tf.cast(parsed_tensors['image/object/is_crowd'], dtype=tf.bool),
        lambda: tf.zeros_like(parsed_tensors['image/object/class/label'], dtype=tf.bool))  # pylint: disable=line-too-long
    if self._include_mask:
      masks = self._decode_masks(parsed_tensors)

    decoded_tensors = {
        'image': image,
        'source_id': parsed_tensors['image/source_id'],
        'height': parsed_tensors['image/height'],
        'width': parsed_tensors['image/width'],
        'groundtruth_classes': parsed_tensors['image/object/class/label'],
        'groundtruth_is_crowd': is_crowds,
        'groundtruth_area': areas,
        'groundtruth_boxes': boxes,
    }
    if self._include_mask:
      decoded_tensors.update({
          'groundtruth_instance_masks': masks,
          'groundtruth_instance_masks_png': parsed_tensors['image/object/mask'],
      })
    return decoded_tensors