File size: 32,823 Bytes
5672777
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
# Copyright 2023 The TensorFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

"""The COCO-style evaluator.

The following snippet demonstrates the use of interfaces:

  evaluator = COCOEvaluator(...)
  for _ in range(num_evals):
    for _ in range(num_batches_per_eval):
      predictions, groundtruth = predictor.predict(...)  # pop a batch.
      evaluator.update(predictions, groundtruths)  # aggregate internal stats.
    evaluator.evaluate()  # finish one full eval.

See also: https://github.com/cocodataset/cocoapi/
"""

from __future__ import absolute_import
from __future__ import division
from __future__ import print_function

import atexit
import copy
import tempfile

from absl import logging
import numpy as np
from pycocotools import cocoeval
import six
import tensorflow as tf, tf_keras

from official.legacy.detection.evaluation import coco_utils
from official.legacy.detection.utils import class_utils


class OlnCOCOevalWrapper(cocoeval.COCOeval):
  """COCOeval wrapper class.

  Rewritten based on cocoapi: (pycocotools/cocoeval.py)

  This class wraps COCOEVAL API object, which provides the following additional
  functionalities:
    1. summarze 'all', 'seen', and 'novel' split output print-out, e.g., AR at
       different K proposals, AR and AP resutls for 'seen' and 'novel' class
       splits.
  """

  def __init__(self, coco_gt, coco_dt, iou_type='box'):
    super(OlnCOCOevalWrapper, self).__init__(
        cocoGt=coco_gt, cocoDt=coco_dt, iouType=iou_type)

  def summarize(self):
    """Compute and display summary metrics for evaluation results.

    Delta to the standard cocoapi function:
      More Averate Recall metrics are produced with different top-K proposals.
    Note this functin can *only* be applied on the default parameter
    setting.
    Raises:
      Exception: Please run accumulate() first.
    """

    def _summarize(ap=1, iou_thr=None, area_rng='all', max_dets=100):
      p = self.params
      i_str = (' {:<18} {} @[ IoU={:<9} | area={:>6s} | maxDets={:>3d} ] = '
               '{:0.3f}')
      title_str = 'Average Precision' if ap == 1 else 'Average Recall'
      type_str = '(AP)' if ap == 1 else '(AR)'
      iou_str = '{:0.2f}:{:0.2f}'.format(
          p.iouThrs[0],
          p.iouThrs[-1]) if iou_thr is None else '{:0.2f}'.format(iou_thr)

      aind = [i for i, a_rng in enumerate(p.areaRngLbl) if a_rng == area_rng]
      mind = [i for i, m_det in enumerate(p.maxDets) if m_det == max_dets]
      if ap == 1:
        # dimension of precision: [TxRxKxAxM]
        s = self.eval['precision']
        # IoU
        if iou_thr is not None:
          t = np.where(iou_thr == p.iouThrs)[0]
          s = s[t]
        s = s[:, :, :, aind, mind]
      else:
        # dimension of recall: [TxKxAxM]
        s = self.eval['recall']
        if iou_thr is not None:
          t = np.where(iou_thr == p.iouThrs)[0]
          s = s[t]
        s = s[:, :, aind, mind]

      if not (s[s > -1]).any():
        mean_s = -1
      else:
        mean_s = np.mean(s[s > -1])
        print(
            i_str.format(title_str, type_str, iou_str, area_rng, max_dets,
                         mean_s))
      return mean_s

    def _summarize_dets():
      stats = np.zeros((14,))
      stats[0] = _summarize(1)
      stats[1] = _summarize(
          1,
          iou_thr=.5,
      )
      stats[2] = _summarize(
          1,
          iou_thr=.75,
      )
      stats[3] = _summarize(
          1,
          area_rng='small',
      )
      stats[4] = _summarize(
          1,
          area_rng='medium',
      )
      stats[5] = _summarize(
          1,
          area_rng='large',
      )

      stats[6] = _summarize(0, max_dets=self.params.maxDets[0])  # 10
      stats[7] = _summarize(0, max_dets=self.params.maxDets[1])  # 20
      stats[8] = _summarize(0, max_dets=self.params.maxDets[2])  # 50
      stats[9] = _summarize(0, max_dets=self.params.maxDets[3])  # 100
      stats[10] = _summarize(0, max_dets=self.params.maxDets[4])  # 200

      stats[11] = _summarize(0, area_rng='small', max_dets=10)
      stats[12] = _summarize(0, area_rng='medium', max_dets=10)
      stats[13] = _summarize(0, area_rng='large', max_dets=10)
      return stats

    if not self.eval:
      raise Exception('Please run accumulate() first')
    summarize = _summarize_dets
    self.stats = summarize()


class OlnCOCOevalXclassWrapper(OlnCOCOevalWrapper):
  """COCOeval wrapper class.

  Rewritten based on cocoapi: (pycocotools/cocoeval.py)
  Delta to the standard cocoapi:
    Detections that hit the 'seen' class objects are ignored in top-K proposals.

  This class wraps COCOEVAL API object, which provides the following additional
  functionalities:
    1. Include ignore-class split (e.g., 'voc' or 'nonvoc').
    2. Do not count (or ignore) box proposals hitting ignore-class when
       evaluating Average Recall at top-K proposals.
  """

  def __init__(self, coco_gt, coco_dt, iou_type='box'):
    super(OlnCOCOevalXclassWrapper, self).__init__(
        coco_gt=coco_gt, coco_dt=coco_dt, iou_type=iou_type)

  def evaluateImg(self, img_id, cat_id, a_rng, max_det):
    p = self.params
    if p.useCats:
      gt = self._gts[img_id, cat_id]
      dt = self._dts[img_id, cat_id]
    else:
      gt, dt = [], []
      for c_id in p.catIds:
        gt.extend(self._gts[img_id, c_id])
        dt.extend(self._dts[img_id, c_id])

    if not gt and not dt:
      return None

    for g in gt:
      if g['ignore'] or (g['area'] < a_rng[0] or g['area'] > a_rng[1]):
        g['_ignore'] = 1
      else:
        g['_ignore'] = 0
      # Class manipulation: ignore the 'ignored_split'.
      if 'ignored_split' in g and g['ignored_split'] == 1:
        g['_ignore'] = 1

    # sort dt highest score first, sort gt ignore last
    gtind = np.argsort([g['_ignore'] for g in gt], kind='mergesort')
    gt = [gt[i] for i in gtind]
    dtind = np.argsort([-d['score'] for d in dt], kind='mergesort')
    dt = [dt[i] for i in dtind[0:max_det]]
    iscrowd = [int(o['iscrowd']) for o in gt]
    # load computed ious
    # ious = self.ious[img_id, cat_id][:, gtind] if len(
    #     self.ious[img_id, cat_id]) > 0 else self.ious[img_id, cat_id]
    if self.ious[img_id, cat_id].any():
      ious = self.ious[img_id, cat_id][:, gtind]
    else:
      ious = self.ious[img_id, cat_id]

    tt = len(p.iouThrs)
    gg = len(gt)
    dd = len(dt)
    gtm = np.zeros((tt, gg))
    dtm = np.zeros((tt, dd))
    gt_ig = np.array([g['_ignore'] for g in gt])
    dt_ig = np.zeros((tt, dd))
    # indicator of whether the gt object class is of ignored_split or not.
    gt_ig_split = np.array([g['ignored_split'] for g in gt])
    dt_ig_split = np.zeros((dd))

    if ious.any():
      for tind, t in enumerate(p.iouThrs):
        for dind, d in enumerate(dt):
          # information about best match so far (m=-1 -> unmatched)
          iou = min([t, 1 - 1e-10])
          m = -1
          for gind, g in enumerate(gt):
            # if this gt already matched, and not a crowd, continue
            if gtm[tind, gind] > 0 and not iscrowd[gind]:
              continue
            # if dt matched to reg gt, and on ignore gt, stop
            if m > -1 and gt_ig[m] == 0 and gt_ig[gind] == 1:
              break
            # continue to next gt unless better match made
            if ious[dind, gind] < iou:
              continue
            # if match successful and best so far, store appropriately
            iou = ious[dind, gind]
            m = gind
          # if match made store id of match for both dt and gt
          if m == -1:
            continue
          dt_ig[tind, dind] = gt_ig[m]
          dtm[tind, dind] = gt[m]['id']
          gtm[tind, m] = d['id']

          # Activate to ignore the seen-class detections.
          if tind == 0:  # Register just only once: tind > 0 is also fine.
            dt_ig_split[dind] = gt_ig_split[m]

    # set unmatched detections outside of area range to ignore
    a = np.array([d['area'] < a_rng[0] or d['area'] > a_rng[1] for d in dt
                 ]).reshape((1, len(dt)))
    dt_ig = np.logical_or(dt_ig, np.logical_and(dtm == 0, np.repeat(a, tt, 0)))

    # Activate to ignore the seen-class detections.
    # Take only eval_split (eg, nonvoc) and ignore seen_split (eg, voc).
    if dt_ig_split.sum() > 0:
      dtm = dtm[:, dt_ig_split == 0]
      dt_ig = dt_ig[:, dt_ig_split == 0]
      len_dt = min(max_det, len(dt))
      dt = [dt[i] for i in range(len_dt) if dt_ig_split[i] == 0]

    # store results for given image and category
    return {
        'image_id': img_id,
        'category_id': cat_id,
        'aRng': a_rng,
        'maxDet': max_det,
        'dtIds': [d['id'] for d in dt],
        'gtIds': [g['id'] for g in gt],
        'dtMatches': dtm,
        'gtMatches': gtm,
        'dtScores': [d['score'] for d in dt],
        'gtIgnore': gt_ig,
        'dtIgnore': dt_ig,
    }


class MetricWrapper(object):
  """Metric Wrapper of the COCO evaluator."""
  # This is only a wrapper for COCO metric and works on for numpy array. So it
  # doesn't inherit from tf_keras.layers.Layer or tf_keras.metrics.Metric.

  def __init__(self, evaluator):
    self._evaluator = evaluator

  def update_state(self, y_true, y_pred):
    """Update internal states."""
    labels = tf.nest.map_structure(lambda x: x.numpy(), y_true)
    outputs = tf.nest.map_structure(lambda x: x.numpy(), y_pred)
    groundtruths = {}
    predictions = {}
    for key, val in outputs.items():
      if isinstance(val, tuple):
        val = np.concatenate(val)
      predictions[key] = val
    for key, val in labels.items():
      if isinstance(val, tuple):
        val = np.concatenate(val)
      groundtruths[key] = val
    self._evaluator.update(predictions, groundtruths)

  def result(self):
    return self._evaluator.evaluate()

  def reset_states(self):
    return self._evaluator.reset()


class COCOEvaluator(object):
  """COCO evaluation metric class."""

  def __init__(self, annotation_file, include_mask, need_rescale_bboxes=True):
    """Constructs COCO evaluation class.

    The class provides the interface to metrics_fn in TPUEstimator. The
    _update_op() takes detections from each image and push them to
    self.detections. The _evaluate() loads a JSON file in COCO annotation format
    as the groundtruths and runs COCO evaluation.

    Args:
      annotation_file: a JSON file that stores annotations of the eval dataset.
        If `annotation_file` is None, groundtruth annotations will be loaded
        from the dataloader.
      include_mask: a boolean to indicate whether or not to include the mask
        eval.
      need_rescale_bboxes: If true bboxes in `predictions` will be rescaled back
        to absolute values (`image_info` is needed in this case).
    """
    if annotation_file:
      if annotation_file.startswith('gs://'):
        _, local_val_json = tempfile.mkstemp(suffix='.json')
        tf.io.gfile.remove(local_val_json)

        tf.io.gfile.copy(annotation_file, local_val_json)
        atexit.register(tf.io.gfile.remove, local_val_json)
      else:
        local_val_json = annotation_file
      self._coco_gt = coco_utils.COCOWrapper(
          eval_type=('mask' if include_mask else 'box'),
          annotation_file=local_val_json)
    self._annotation_file = annotation_file
    self._include_mask = include_mask
    self._metric_names = [
        'AP', 'AP50', 'AP75', 'APs', 'APm', 'APl', 'ARmax1', 'ARmax10',
        'ARmax100', 'ARs', 'ARm', 'ARl'
    ]
    self._required_prediction_fields = [
        'source_id', 'num_detections', 'detection_classes', 'detection_scores',
        'detection_boxes'
    ]
    self._need_rescale_bboxes = need_rescale_bboxes
    if self._need_rescale_bboxes:
      self._required_prediction_fields.append('image_info')
    self._required_groundtruth_fields = [
        'source_id', 'height', 'width', 'classes', 'boxes'
    ]
    if self._include_mask:
      mask_metric_names = ['mask_' + x for x in self._metric_names]
      self._metric_names.extend(mask_metric_names)
      self._required_prediction_fields.extend(['detection_masks'])
      self._required_groundtruth_fields.extend(['masks'])

    self.reset()

  def reset(self):
    """Resets internal states for a fresh run."""
    self._predictions = {}
    if not self._annotation_file:
      self._groundtruths = {}

  def evaluate(self):
    """Evaluates with detections from all images with COCO API.

    Returns:
      coco_metric: float numpy array with shape [24] representing the
        coco-style evaluation metrics (box and mask).
    """
    if not self._annotation_file:
      logging.info('Thre is no annotation_file in COCOEvaluator.')
      gt_dataset = coco_utils.convert_groundtruths_to_coco_dataset(
          self._groundtruths)
      coco_gt = coco_utils.COCOWrapper(
          eval_type=('mask' if self._include_mask else 'box'),
          gt_dataset=gt_dataset)
    else:
      logging.info('Using annotation file: %s', self._annotation_file)
      coco_gt = self._coco_gt
    coco_predictions = coco_utils.convert_predictions_to_coco_annotations(
        self._predictions)
    coco_dt = coco_gt.loadRes(predictions=coco_predictions)
    image_ids = [ann['image_id'] for ann in coco_predictions]

    coco_eval = cocoeval.COCOeval(coco_gt, coco_dt, iouType='bbox')
    coco_eval.params.imgIds = image_ids
    coco_eval.evaluate()
    coco_eval.accumulate()
    coco_eval.summarize()
    coco_metrics = coco_eval.stats

    if self._include_mask:
      mcoco_eval = cocoeval.COCOeval(coco_gt, coco_dt, iouType='segm')
      mcoco_eval.params.imgIds = image_ids
      mcoco_eval.evaluate()
      mcoco_eval.accumulate()
      mcoco_eval.summarize()
      mask_coco_metrics = mcoco_eval.stats

    if self._include_mask:
      metrics = np.hstack((coco_metrics, mask_coco_metrics))
    else:
      metrics = coco_metrics

    # Cleans up the internal variables in order for a fresh eval next time.
    self.reset()

    metrics_dict = {}
    for i, name in enumerate(self._metric_names):
      metrics_dict[name] = metrics[i].astype(np.float32)
    return metrics_dict

  def _process_predictions(self, predictions):
    image_scale = np.tile(predictions['image_info'][:, 2:3, :], (1, 1, 2))
    predictions['detection_boxes'] = (
        predictions['detection_boxes'].astype(np.float32))
    predictions['detection_boxes'] /= image_scale
    if 'detection_outer_boxes' in predictions:
      predictions['detection_outer_boxes'] = (
          predictions['detection_outer_boxes'].astype(np.float32))
      predictions['detection_outer_boxes'] /= image_scale

  def update(self, predictions, groundtruths=None):
    """Update and aggregate detection results and groundtruth data.

    Args:
      predictions: a dictionary of numpy arrays including the fields below. See
        different parsers under `../dataloader` for more details.
        Required fields:
          - source_id: a numpy array of int or string of shape [batch_size].
          - image_info [if `need_rescale_bboxes` is True]: a numpy array of
            float of shape [batch_size, 4, 2].
          - num_detections: a numpy array of int of shape [batch_size].
          - detection_boxes: a numpy array of float of shape [batch_size, K, 4].
          - detection_classes: a numpy array of int of shape [batch_size, K].
          - detection_scores: a numpy array of float of shape [batch_size, K].
        Optional fields:
          - detection_masks: a numpy array of float of shape [batch_size, K,
            mask_height, mask_width].
      groundtruths: a dictionary of numpy arrays including the fields below. See
        also different parsers under `../dataloader` for more details.
        Required fields:
          - source_id: a numpy array of int or string of shape [batch_size].
          - height: a numpy array of int of shape [batch_size].
          - width: a numpy array of int of shape [batch_size].
          - num_detections: a numpy array of int of shape [batch_size].
          - boxes: a numpy array of float of shape [batch_size, K, 4].
          - classes: a numpy array of int of shape [batch_size, K].
        Optional fields:
          - is_crowds: a numpy array of int of shape [batch_size, K]. If the
            field is absent, it is assumed that this instance is not crowd.
          - areas: a numy array of float of shape [batch_size, K]. If the field
            is absent, the area is calculated using either boxes or masks
            depending on which one is available.
          - masks: a numpy array of float of shape [batch_size, K, mask_height,
            mask_width],

    Raises:
      ValueError: if the required prediction or groundtruth fields are not
        present in the incoming `predictions` or `groundtruths`.
    """
    for k in self._required_prediction_fields:
      if k not in predictions:
        raise ValueError(
            'Missing the required key `{}` in predictions!'.format(k))
    if self._need_rescale_bboxes:
      self._process_predictions(predictions)
    for k, v in six.iteritems(predictions):
      if k not in self._predictions:
        self._predictions[k] = [v]
      else:
        self._predictions[k].append(v)

    if not self._annotation_file:
      assert groundtruths
      for k in self._required_groundtruth_fields:
        if k not in groundtruths:
          raise ValueError(
              'Missing the required key `{}` in groundtruths!'.format(k))
      for k, v in six.iteritems(groundtruths):
        if k not in self._groundtruths:
          self._groundtruths[k] = [v]
        else:
          self._groundtruths[k].append(v)


class OlnXclassEvaluator(COCOEvaluator):
  """COCO evaluation metric class."""

  def __init__(self, annotation_file, include_mask, need_rescale_bboxes=True,
               use_category=True, seen_class='all'):
    """Constructs COCO evaluation class.

    The class provides the interface to metrics_fn in TPUEstimator. The
    _update_op() takes detections from each image and push them to
    self.detections. The _evaluate() loads a JSON file in COCO annotation format
    as the groundtruths and runs COCO evaluation.

    Args:
      annotation_file: a JSON file that stores annotations of the eval dataset.
        If `annotation_file` is None, groundtruth annotations will be loaded
        from the dataloader.
      include_mask: a boolean to indicate whether or not to include the mask
        eval.
      need_rescale_bboxes: If true bboxes in `predictions` will be rescaled back
        to absolute values (`image_info` is needed in this case).
      use_category: if `False`, treat all object in all classes in one
        foreground category.
      seen_class: 'all' or 'voc' or 'nonvoc'
    """
    super(OlnXclassEvaluator, self).__init__(
        annotation_file=annotation_file,
        include_mask=include_mask,
        need_rescale_bboxes=need_rescale_bboxes)
    self._use_category = use_category
    self._seen_class = seen_class
    self._seen_class_ids = class_utils.coco_split_class_ids(seen_class)
    self._metric_names = [
        'AP', 'AP50', 'AP75',
        'APs', 'APm', 'APl',
        'ARmax10', 'ARmax20', 'ARmax50', 'ARmax100', 'ARmax200',
        'ARmax10s', 'ARmax10m', 'ARmax10l'
    ]
    if self._seen_class != 'all':
      self._metric_names.extend([
          'AP_seen', 'AP50_seen', 'AP75_seen',
          'APs_seen', 'APm_seen', 'APl_seen',
          'ARmax10_seen', 'ARmax20_seen', 'ARmax50_seen',
          'ARmax100_seen', 'ARmax200_seen',
          'ARmax10s_seen', 'ARmax10m_seen', 'ARmax10l_seen',

          'AP_novel', 'AP50_novel', 'AP75_novel',
          'APs_novel', 'APm_novel', 'APl_novel',
          'ARmax10_novel', 'ARmax20_novel', 'ARmax50_novel',
          'ARmax100_novel', 'ARmax200_novel',
          'ARmax10s_novel', 'ARmax10m_novel', 'ARmax10l_novel',
      ])
    if self._include_mask:
      mask_metric_names = ['mask_' + x for x in self._metric_names]
      self._metric_names.extend(mask_metric_names)
      self._required_prediction_fields.extend(['detection_masks'])
      self._required_groundtruth_fields.extend(['masks'])

    self.reset()

  def evaluate(self):
    """Evaluates with detections from all images with COCO API.

    Returns:
      coco_metric: float numpy array with shape [24] representing the
        coco-style evaluation metrics (box and mask).
    """
    if not self._annotation_file:
      logging.info('Thre is no annotation_file in COCOEvaluator.')
      gt_dataset = coco_utils.convert_groundtruths_to_coco_dataset(
          self._groundtruths)
      coco_gt = coco_utils.COCOWrapper(
          eval_type=('mask' if self._include_mask else 'box'),
          gt_dataset=gt_dataset)
    else:
      logging.info('Using annotation file: %s', self._annotation_file)
      coco_gt = self._coco_gt

    coco_predictions = coco_utils.convert_predictions_to_coco_annotations(
        self._predictions)
    coco_dt = coco_gt.loadRes(predictions=coco_predictions)
    image_ids = [ann['image_id'] for ann in coco_predictions]
    # Class manipulation: 'all' split samples -> ignored_split = 0.
    for idx, ann in enumerate(coco_gt.dataset['annotations']):
      coco_gt.dataset['annotations'][idx]['ignored_split'] = 0
    coco_eval = cocoeval.OlnCOCOevalXclassWrapper(
        coco_gt, coco_dt, iou_type='bbox')
    coco_eval.params.maxDets = [10, 20, 50, 100, 200]
    coco_eval.params.imgIds = image_ids
    coco_eval.params.useCats = 0 if not self._use_category else 1
    coco_eval.evaluate()
    coco_eval.accumulate()
    coco_eval.summarize()
    coco_metrics = coco_eval.stats

    if self._include_mask:
      mcoco_eval = cocoeval.OlnCOCOevalXclassWrapper(
          coco_gt, coco_dt, iou_type='segm')
      mcoco_eval.params.maxDets = [10, 20, 50, 100, 200]
      mcoco_eval.params.imgIds = image_ids
      mcoco_eval.params.useCats = 0 if not self._use_category else 1
      mcoco_eval.evaluate()
      mcoco_eval.accumulate()
      mcoco_eval.summarize()
      mask_coco_metrics = mcoco_eval.stats

    if self._include_mask:
      metrics = np.hstack((coco_metrics, mask_coco_metrics))
    else:
      metrics = coco_metrics

    if self._seen_class != 'all':
      # for seen class eval, samples of novel_class are ignored.
      coco_gt_seen = copy.deepcopy(coco_gt)
      for idx, ann in enumerate(coco_gt.dataset['annotations']):
        if ann['category_id'] in self._seen_class_ids:
          coco_gt_seen.dataset['annotations'][idx]['ignored_split'] = 0
        else:
          coco_gt_seen.dataset['annotations'][idx]['ignored_split'] = 1
      coco_eval_seen = cocoeval.OlnCOCOevalXclassWrapper(
          coco_gt_seen, coco_dt, iou_type='bbox')
      coco_eval_seen.params.maxDets = [10, 20, 50, 100, 200]
      coco_eval_seen.params.imgIds = image_ids
      coco_eval_seen.params.useCats = 0 if not self._use_category else 1
      coco_eval_seen.evaluate()
      coco_eval_seen.accumulate()
      coco_eval_seen.summarize()
      coco_metrics_seen = coco_eval_seen.stats
      if self._include_mask:
        mcoco_eval_seen = cocoeval.OlnCOCOevalXclassWrapper(
            coco_gt_seen, coco_dt, iou_type='segm')
        mcoco_eval_seen.params.maxDets = [10, 20, 50, 100, 200]
        mcoco_eval_seen.params.imgIds = image_ids
        mcoco_eval_seen.params.useCats = 0 if not self._use_category else 1
        mcoco_eval_seen.evaluate()
        mcoco_eval_seen.accumulate()
        mcoco_eval_seen.summarize()
        mask_coco_metrics_seen = mcoco_eval_seen.stats

      # for novel class eval, samples of seen_class are ignored.
      coco_gt_novel = copy.deepcopy(coco_gt)
      for idx, ann in enumerate(coco_gt.dataset['annotations']):
        if ann['category_id'] in self._seen_class_ids:
          coco_gt_novel.dataset['annotations'][idx]['ignored_split'] = 1
        else:
          coco_gt_novel.dataset['annotations'][idx]['ignored_split'] = 0
      coco_eval_novel = cocoeval.OlnCOCOevalXclassWrapper(
          coco_gt_novel, coco_dt, iou_type='bbox')
      coco_eval_novel.params.maxDets = [10, 20, 50, 100, 200]
      coco_eval_novel.params.imgIds = image_ids
      coco_eval_novel.params.useCats = 0 if not self._use_category else 1
      coco_eval_novel.evaluate()
      coco_eval_novel.accumulate()
      coco_eval_novel.summarize()
      coco_metrics_novel = coco_eval_novel.stats
      if self._include_mask:
        mcoco_eval_novel = cocoeval.OlnCOCOevalXclassWrapper(
            coco_gt_novel, coco_dt, iou_type='segm')
        mcoco_eval_novel.params.maxDets = [10, 20, 50, 100, 200]
        mcoco_eval_novel.params.imgIds = image_ids
        mcoco_eval_novel.params.useCats = 0 if not self._use_category else 1
        mcoco_eval_novel.evaluate()
        mcoco_eval_novel.accumulate()
        mcoco_eval_novel.summarize()
        mask_coco_metrics_novel = mcoco_eval_novel.stats

      # Combine all splits.
      if self._include_mask:
        metrics = np.hstack((
            coco_metrics, coco_metrics_seen, coco_metrics_novel,
            mask_coco_metrics, mask_coco_metrics_seen, mask_coco_metrics_novel))
      else:
        metrics = np.hstack((
            coco_metrics, coco_metrics_seen, coco_metrics_novel))

    # Cleans up the internal variables in order for a fresh eval next time.
    self.reset()

    metrics_dict = {}
    for i, name in enumerate(self._metric_names):
      metrics_dict[name] = metrics[i].astype(np.float32)
    return metrics_dict


class OlnXdataEvaluator(OlnXclassEvaluator):
  """COCO evaluation metric class."""

  def __init__(self, annotation_file, include_mask, need_rescale_bboxes=True,
               use_category=True, seen_class='all'):
    """Constructs COCO evaluation class.

    The class provides the interface to metrics_fn in TPUEstimator. The
    _update_op() takes detections from each image and push them to
    self.detections. The _evaluate() loads a JSON file in COCO annotation format
    as the groundtruths and runs COCO evaluation.

    Args:
      annotation_file: a JSON file that stores annotations of the eval dataset.
        If `annotation_file` is None, groundtruth annotations will be loaded
        from the dataloader.
      include_mask: a boolean to indicate whether or not to include the mask
        eval.
      need_rescale_bboxes: If true bboxes in `predictions` will be rescaled back
        to absolute values (`image_info` is needed in this case).
      use_category: if `False`, treat all object in all classes in one
        foreground category.
      seen_class: 'all' or 'voc' or 'nonvoc'
    """
    super(OlnXdataEvaluator, self).__init__(
        annotation_file=annotation_file,
        include_mask=include_mask,
        need_rescale_bboxes=need_rescale_bboxes,
        use_category=False,
        seen_class='all')

  def evaluate(self):
    """Evaluates with detections from all images with COCO API.

    Returns:
      coco_metric: float numpy array with shape [24] representing the
        coco-style evaluation metrics (box and mask).
    """
    if not self._annotation_file:
      logging.info('Thre is no annotation_file in COCOEvaluator.')
      gt_dataset = coco_utils.convert_groundtruths_to_coco_dataset(
          self._groundtruths)
      coco_gt = coco_utils.COCOWrapper(
          eval_type=('mask' if self._include_mask else 'box'),
          gt_dataset=gt_dataset)
    else:
      logging.info('Using annotation file: %s', self._annotation_file)
      coco_gt = self._coco_gt
    coco_predictions = coco_utils.convert_predictions_to_coco_annotations(
        self._predictions)
    coco_dt = coco_gt.loadRes(predictions=coco_predictions)
    image_ids = [ann['image_id'] for ann in coco_predictions]
    # Class manipulation: 'all' split samples -> ignored_split = 0.
    for idx, _ in enumerate(coco_gt.dataset['annotations']):
      coco_gt.dataset['annotations'][idx]['ignored_split'] = 0
    coco_eval = cocoeval.OlnCOCOevalWrapper(coco_gt, coco_dt, iou_type='bbox')
    coco_eval.params.maxDets = [10, 20, 50, 100, 200]
    coco_eval.params.imgIds = image_ids
    coco_eval.params.useCats = 0 if not self._use_category else 1
    coco_eval.evaluate()
    coco_eval.accumulate()
    coco_eval.summarize()
    coco_metrics = coco_eval.stats

    if self._include_mask:
      mcoco_eval = cocoeval.OlnCOCOevalWrapper(coco_gt, coco_dt,
                                               iou_type='segm')
      mcoco_eval.params.maxDets = [10, 20, 50, 100, 200]
      mcoco_eval.params.imgIds = image_ids
      mcoco_eval.params.useCats = 0 if not self._use_category else 1
      mcoco_eval.evaluate()
      mcoco_eval.accumulate()
      mcoco_eval.summarize()
      mask_coco_metrics = mcoco_eval.stats

    if self._include_mask:
      metrics = np.hstack((coco_metrics, mask_coco_metrics))
    else:
      metrics = coco_metrics

    # Cleans up the internal variables in order for a fresh eval next time.
    self.reset()

    metrics_dict = {}
    for i, name in enumerate(self._metric_names):
      metrics_dict[name] = metrics[i].astype(np.float32)
    return metrics_dict


class ShapeMaskCOCOEvaluator(COCOEvaluator):
  """COCO evaluation metric class for ShapeMask."""

  def __init__(self, mask_eval_class, **kwargs):
    """Constructs COCO evaluation class.

    The class provides the interface to metrics_fn in TPUEstimator. The
    _update_op() takes detections from each image and push them to
    self.detections. The _evaluate() loads a JSON file in COCO annotation format
    as the groundtruths and runs COCO evaluation.

    Args:
      mask_eval_class: the set of classes for mask evaluation.
      **kwargs: other keyword arguments passed to the parent class initializer.
    """
    super(ShapeMaskCOCOEvaluator, self).__init__(**kwargs)
    self._mask_eval_class = mask_eval_class
    self._eval_categories = class_utils.coco_split_class_ids(mask_eval_class)
    if mask_eval_class != 'all':
      self._metric_names = [
          x.replace('mask', 'novel_mask') for x in self._metric_names
      ]

  def evaluate(self):
    """Evaluates with detections from all images with COCO API.

    Returns:
      coco_metric: float numpy array with shape [24] representing the
        coco-style evaluation metrics (box and mask).
    """
    if not self._annotation_file:
      gt_dataset = coco_utils.convert_groundtruths_to_coco_dataset(
          self._groundtruths)
      coco_gt = coco_utils.COCOWrapper(
          eval_type=('mask' if self._include_mask else 'box'),
          gt_dataset=gt_dataset)
    else:
      coco_gt = self._coco_gt
    coco_predictions = coco_utils.convert_predictions_to_coco_annotations(
        self._predictions)
    coco_dt = coco_gt.loadRes(predictions=coco_predictions)
    image_ids = [ann['image_id'] for ann in coco_predictions]

    coco_eval = cocoeval.COCOeval(coco_gt, coco_dt, iouType='bbox')
    coco_eval.params.imgIds = image_ids
    coco_eval.evaluate()
    coco_eval.accumulate()
    coco_eval.summarize()
    coco_metrics = coco_eval.stats

    if self._include_mask:
      mcoco_eval = cocoeval.COCOeval(coco_gt, coco_dt, iouType='segm')
      mcoco_eval.params.imgIds = image_ids
      mcoco_eval.evaluate()
      mcoco_eval.accumulate()
      mcoco_eval.summarize()
      if self._mask_eval_class == 'all':
        metrics = np.hstack((coco_metrics, mcoco_eval.stats))
      else:
        mask_coco_metrics = mcoco_eval.category_stats
        val_catg_idx = np.isin(mcoco_eval.params.catIds, self._eval_categories)
        # Gather the valid evaluation of the eval categories.
        if np.any(val_catg_idx):
          mean_val_metrics = []
          for mid in range(len(self._metric_names) // 2):
            mean_val_metrics.append(
                np.nanmean(mask_coco_metrics[mid][val_catg_idx]))

          mean_val_metrics = np.array(mean_val_metrics)
        else:
          mean_val_metrics = np.zeros(len(self._metric_names) // 2)
        metrics = np.hstack((coco_metrics, mean_val_metrics))
    else:
      metrics = coco_metrics

    # Cleans up the internal variables in order for a fresh eval next time.
    self.reset()

    metrics_dict = {}
    for i, name in enumerate(self._metric_names):
      metrics_dict[name] = metrics[i].astype(np.float32)
    return metrics_dict