Spaces:
Sleeping
Sleeping
File size: 32,823 Bytes
5672777 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 |
# Copyright 2023 The TensorFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""The COCO-style evaluator.
The following snippet demonstrates the use of interfaces:
evaluator = COCOEvaluator(...)
for _ in range(num_evals):
for _ in range(num_batches_per_eval):
predictions, groundtruth = predictor.predict(...) # pop a batch.
evaluator.update(predictions, groundtruths) # aggregate internal stats.
evaluator.evaluate() # finish one full eval.
See also: https://github.com/cocodataset/cocoapi/
"""
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import atexit
import copy
import tempfile
from absl import logging
import numpy as np
from pycocotools import cocoeval
import six
import tensorflow as tf, tf_keras
from official.legacy.detection.evaluation import coco_utils
from official.legacy.detection.utils import class_utils
class OlnCOCOevalWrapper(cocoeval.COCOeval):
"""COCOeval wrapper class.
Rewritten based on cocoapi: (pycocotools/cocoeval.py)
This class wraps COCOEVAL API object, which provides the following additional
functionalities:
1. summarze 'all', 'seen', and 'novel' split output print-out, e.g., AR at
different K proposals, AR and AP resutls for 'seen' and 'novel' class
splits.
"""
def __init__(self, coco_gt, coco_dt, iou_type='box'):
super(OlnCOCOevalWrapper, self).__init__(
cocoGt=coco_gt, cocoDt=coco_dt, iouType=iou_type)
def summarize(self):
"""Compute and display summary metrics for evaluation results.
Delta to the standard cocoapi function:
More Averate Recall metrics are produced with different top-K proposals.
Note this functin can *only* be applied on the default parameter
setting.
Raises:
Exception: Please run accumulate() first.
"""
def _summarize(ap=1, iou_thr=None, area_rng='all', max_dets=100):
p = self.params
i_str = (' {:<18} {} @[ IoU={:<9} | area={:>6s} | maxDets={:>3d} ] = '
'{:0.3f}')
title_str = 'Average Precision' if ap == 1 else 'Average Recall'
type_str = '(AP)' if ap == 1 else '(AR)'
iou_str = '{:0.2f}:{:0.2f}'.format(
p.iouThrs[0],
p.iouThrs[-1]) if iou_thr is None else '{:0.2f}'.format(iou_thr)
aind = [i for i, a_rng in enumerate(p.areaRngLbl) if a_rng == area_rng]
mind = [i for i, m_det in enumerate(p.maxDets) if m_det == max_dets]
if ap == 1:
# dimension of precision: [TxRxKxAxM]
s = self.eval['precision']
# IoU
if iou_thr is not None:
t = np.where(iou_thr == p.iouThrs)[0]
s = s[t]
s = s[:, :, :, aind, mind]
else:
# dimension of recall: [TxKxAxM]
s = self.eval['recall']
if iou_thr is not None:
t = np.where(iou_thr == p.iouThrs)[0]
s = s[t]
s = s[:, :, aind, mind]
if not (s[s > -1]).any():
mean_s = -1
else:
mean_s = np.mean(s[s > -1])
print(
i_str.format(title_str, type_str, iou_str, area_rng, max_dets,
mean_s))
return mean_s
def _summarize_dets():
stats = np.zeros((14,))
stats[0] = _summarize(1)
stats[1] = _summarize(
1,
iou_thr=.5,
)
stats[2] = _summarize(
1,
iou_thr=.75,
)
stats[3] = _summarize(
1,
area_rng='small',
)
stats[4] = _summarize(
1,
area_rng='medium',
)
stats[5] = _summarize(
1,
area_rng='large',
)
stats[6] = _summarize(0, max_dets=self.params.maxDets[0]) # 10
stats[7] = _summarize(0, max_dets=self.params.maxDets[1]) # 20
stats[8] = _summarize(0, max_dets=self.params.maxDets[2]) # 50
stats[9] = _summarize(0, max_dets=self.params.maxDets[3]) # 100
stats[10] = _summarize(0, max_dets=self.params.maxDets[4]) # 200
stats[11] = _summarize(0, area_rng='small', max_dets=10)
stats[12] = _summarize(0, area_rng='medium', max_dets=10)
stats[13] = _summarize(0, area_rng='large', max_dets=10)
return stats
if not self.eval:
raise Exception('Please run accumulate() first')
summarize = _summarize_dets
self.stats = summarize()
class OlnCOCOevalXclassWrapper(OlnCOCOevalWrapper):
"""COCOeval wrapper class.
Rewritten based on cocoapi: (pycocotools/cocoeval.py)
Delta to the standard cocoapi:
Detections that hit the 'seen' class objects are ignored in top-K proposals.
This class wraps COCOEVAL API object, which provides the following additional
functionalities:
1. Include ignore-class split (e.g., 'voc' or 'nonvoc').
2. Do not count (or ignore) box proposals hitting ignore-class when
evaluating Average Recall at top-K proposals.
"""
def __init__(self, coco_gt, coco_dt, iou_type='box'):
super(OlnCOCOevalXclassWrapper, self).__init__(
coco_gt=coco_gt, coco_dt=coco_dt, iou_type=iou_type)
def evaluateImg(self, img_id, cat_id, a_rng, max_det):
p = self.params
if p.useCats:
gt = self._gts[img_id, cat_id]
dt = self._dts[img_id, cat_id]
else:
gt, dt = [], []
for c_id in p.catIds:
gt.extend(self._gts[img_id, c_id])
dt.extend(self._dts[img_id, c_id])
if not gt and not dt:
return None
for g in gt:
if g['ignore'] or (g['area'] < a_rng[0] or g['area'] > a_rng[1]):
g['_ignore'] = 1
else:
g['_ignore'] = 0
# Class manipulation: ignore the 'ignored_split'.
if 'ignored_split' in g and g['ignored_split'] == 1:
g['_ignore'] = 1
# sort dt highest score first, sort gt ignore last
gtind = np.argsort([g['_ignore'] for g in gt], kind='mergesort')
gt = [gt[i] for i in gtind]
dtind = np.argsort([-d['score'] for d in dt], kind='mergesort')
dt = [dt[i] for i in dtind[0:max_det]]
iscrowd = [int(o['iscrowd']) for o in gt]
# load computed ious
# ious = self.ious[img_id, cat_id][:, gtind] if len(
# self.ious[img_id, cat_id]) > 0 else self.ious[img_id, cat_id]
if self.ious[img_id, cat_id].any():
ious = self.ious[img_id, cat_id][:, gtind]
else:
ious = self.ious[img_id, cat_id]
tt = len(p.iouThrs)
gg = len(gt)
dd = len(dt)
gtm = np.zeros((tt, gg))
dtm = np.zeros((tt, dd))
gt_ig = np.array([g['_ignore'] for g in gt])
dt_ig = np.zeros((tt, dd))
# indicator of whether the gt object class is of ignored_split or not.
gt_ig_split = np.array([g['ignored_split'] for g in gt])
dt_ig_split = np.zeros((dd))
if ious.any():
for tind, t in enumerate(p.iouThrs):
for dind, d in enumerate(dt):
# information about best match so far (m=-1 -> unmatched)
iou = min([t, 1 - 1e-10])
m = -1
for gind, g in enumerate(gt):
# if this gt already matched, and not a crowd, continue
if gtm[tind, gind] > 0 and not iscrowd[gind]:
continue
# if dt matched to reg gt, and on ignore gt, stop
if m > -1 and gt_ig[m] == 0 and gt_ig[gind] == 1:
break
# continue to next gt unless better match made
if ious[dind, gind] < iou:
continue
# if match successful and best so far, store appropriately
iou = ious[dind, gind]
m = gind
# if match made store id of match for both dt and gt
if m == -1:
continue
dt_ig[tind, dind] = gt_ig[m]
dtm[tind, dind] = gt[m]['id']
gtm[tind, m] = d['id']
# Activate to ignore the seen-class detections.
if tind == 0: # Register just only once: tind > 0 is also fine.
dt_ig_split[dind] = gt_ig_split[m]
# set unmatched detections outside of area range to ignore
a = np.array([d['area'] < a_rng[0] or d['area'] > a_rng[1] for d in dt
]).reshape((1, len(dt)))
dt_ig = np.logical_or(dt_ig, np.logical_and(dtm == 0, np.repeat(a, tt, 0)))
# Activate to ignore the seen-class detections.
# Take only eval_split (eg, nonvoc) and ignore seen_split (eg, voc).
if dt_ig_split.sum() > 0:
dtm = dtm[:, dt_ig_split == 0]
dt_ig = dt_ig[:, dt_ig_split == 0]
len_dt = min(max_det, len(dt))
dt = [dt[i] for i in range(len_dt) if dt_ig_split[i] == 0]
# store results for given image and category
return {
'image_id': img_id,
'category_id': cat_id,
'aRng': a_rng,
'maxDet': max_det,
'dtIds': [d['id'] for d in dt],
'gtIds': [g['id'] for g in gt],
'dtMatches': dtm,
'gtMatches': gtm,
'dtScores': [d['score'] for d in dt],
'gtIgnore': gt_ig,
'dtIgnore': dt_ig,
}
class MetricWrapper(object):
"""Metric Wrapper of the COCO evaluator."""
# This is only a wrapper for COCO metric and works on for numpy array. So it
# doesn't inherit from tf_keras.layers.Layer or tf_keras.metrics.Metric.
def __init__(self, evaluator):
self._evaluator = evaluator
def update_state(self, y_true, y_pred):
"""Update internal states."""
labels = tf.nest.map_structure(lambda x: x.numpy(), y_true)
outputs = tf.nest.map_structure(lambda x: x.numpy(), y_pred)
groundtruths = {}
predictions = {}
for key, val in outputs.items():
if isinstance(val, tuple):
val = np.concatenate(val)
predictions[key] = val
for key, val in labels.items():
if isinstance(val, tuple):
val = np.concatenate(val)
groundtruths[key] = val
self._evaluator.update(predictions, groundtruths)
def result(self):
return self._evaluator.evaluate()
def reset_states(self):
return self._evaluator.reset()
class COCOEvaluator(object):
"""COCO evaluation metric class."""
def __init__(self, annotation_file, include_mask, need_rescale_bboxes=True):
"""Constructs COCO evaluation class.
The class provides the interface to metrics_fn in TPUEstimator. The
_update_op() takes detections from each image and push them to
self.detections. The _evaluate() loads a JSON file in COCO annotation format
as the groundtruths and runs COCO evaluation.
Args:
annotation_file: a JSON file that stores annotations of the eval dataset.
If `annotation_file` is None, groundtruth annotations will be loaded
from the dataloader.
include_mask: a boolean to indicate whether or not to include the mask
eval.
need_rescale_bboxes: If true bboxes in `predictions` will be rescaled back
to absolute values (`image_info` is needed in this case).
"""
if annotation_file:
if annotation_file.startswith('gs://'):
_, local_val_json = tempfile.mkstemp(suffix='.json')
tf.io.gfile.remove(local_val_json)
tf.io.gfile.copy(annotation_file, local_val_json)
atexit.register(tf.io.gfile.remove, local_val_json)
else:
local_val_json = annotation_file
self._coco_gt = coco_utils.COCOWrapper(
eval_type=('mask' if include_mask else 'box'),
annotation_file=local_val_json)
self._annotation_file = annotation_file
self._include_mask = include_mask
self._metric_names = [
'AP', 'AP50', 'AP75', 'APs', 'APm', 'APl', 'ARmax1', 'ARmax10',
'ARmax100', 'ARs', 'ARm', 'ARl'
]
self._required_prediction_fields = [
'source_id', 'num_detections', 'detection_classes', 'detection_scores',
'detection_boxes'
]
self._need_rescale_bboxes = need_rescale_bboxes
if self._need_rescale_bboxes:
self._required_prediction_fields.append('image_info')
self._required_groundtruth_fields = [
'source_id', 'height', 'width', 'classes', 'boxes'
]
if self._include_mask:
mask_metric_names = ['mask_' + x for x in self._metric_names]
self._metric_names.extend(mask_metric_names)
self._required_prediction_fields.extend(['detection_masks'])
self._required_groundtruth_fields.extend(['masks'])
self.reset()
def reset(self):
"""Resets internal states for a fresh run."""
self._predictions = {}
if not self._annotation_file:
self._groundtruths = {}
def evaluate(self):
"""Evaluates with detections from all images with COCO API.
Returns:
coco_metric: float numpy array with shape [24] representing the
coco-style evaluation metrics (box and mask).
"""
if not self._annotation_file:
logging.info('Thre is no annotation_file in COCOEvaluator.')
gt_dataset = coco_utils.convert_groundtruths_to_coco_dataset(
self._groundtruths)
coco_gt = coco_utils.COCOWrapper(
eval_type=('mask' if self._include_mask else 'box'),
gt_dataset=gt_dataset)
else:
logging.info('Using annotation file: %s', self._annotation_file)
coco_gt = self._coco_gt
coco_predictions = coco_utils.convert_predictions_to_coco_annotations(
self._predictions)
coco_dt = coco_gt.loadRes(predictions=coco_predictions)
image_ids = [ann['image_id'] for ann in coco_predictions]
coco_eval = cocoeval.COCOeval(coco_gt, coco_dt, iouType='bbox')
coco_eval.params.imgIds = image_ids
coco_eval.evaluate()
coco_eval.accumulate()
coco_eval.summarize()
coco_metrics = coco_eval.stats
if self._include_mask:
mcoco_eval = cocoeval.COCOeval(coco_gt, coco_dt, iouType='segm')
mcoco_eval.params.imgIds = image_ids
mcoco_eval.evaluate()
mcoco_eval.accumulate()
mcoco_eval.summarize()
mask_coco_metrics = mcoco_eval.stats
if self._include_mask:
metrics = np.hstack((coco_metrics, mask_coco_metrics))
else:
metrics = coco_metrics
# Cleans up the internal variables in order for a fresh eval next time.
self.reset()
metrics_dict = {}
for i, name in enumerate(self._metric_names):
metrics_dict[name] = metrics[i].astype(np.float32)
return metrics_dict
def _process_predictions(self, predictions):
image_scale = np.tile(predictions['image_info'][:, 2:3, :], (1, 1, 2))
predictions['detection_boxes'] = (
predictions['detection_boxes'].astype(np.float32))
predictions['detection_boxes'] /= image_scale
if 'detection_outer_boxes' in predictions:
predictions['detection_outer_boxes'] = (
predictions['detection_outer_boxes'].astype(np.float32))
predictions['detection_outer_boxes'] /= image_scale
def update(self, predictions, groundtruths=None):
"""Update and aggregate detection results and groundtruth data.
Args:
predictions: a dictionary of numpy arrays including the fields below. See
different parsers under `../dataloader` for more details.
Required fields:
- source_id: a numpy array of int or string of shape [batch_size].
- image_info [if `need_rescale_bboxes` is True]: a numpy array of
float of shape [batch_size, 4, 2].
- num_detections: a numpy array of int of shape [batch_size].
- detection_boxes: a numpy array of float of shape [batch_size, K, 4].
- detection_classes: a numpy array of int of shape [batch_size, K].
- detection_scores: a numpy array of float of shape [batch_size, K].
Optional fields:
- detection_masks: a numpy array of float of shape [batch_size, K,
mask_height, mask_width].
groundtruths: a dictionary of numpy arrays including the fields below. See
also different parsers under `../dataloader` for more details.
Required fields:
- source_id: a numpy array of int or string of shape [batch_size].
- height: a numpy array of int of shape [batch_size].
- width: a numpy array of int of shape [batch_size].
- num_detections: a numpy array of int of shape [batch_size].
- boxes: a numpy array of float of shape [batch_size, K, 4].
- classes: a numpy array of int of shape [batch_size, K].
Optional fields:
- is_crowds: a numpy array of int of shape [batch_size, K]. If the
field is absent, it is assumed that this instance is not crowd.
- areas: a numy array of float of shape [batch_size, K]. If the field
is absent, the area is calculated using either boxes or masks
depending on which one is available.
- masks: a numpy array of float of shape [batch_size, K, mask_height,
mask_width],
Raises:
ValueError: if the required prediction or groundtruth fields are not
present in the incoming `predictions` or `groundtruths`.
"""
for k in self._required_prediction_fields:
if k not in predictions:
raise ValueError(
'Missing the required key `{}` in predictions!'.format(k))
if self._need_rescale_bboxes:
self._process_predictions(predictions)
for k, v in six.iteritems(predictions):
if k not in self._predictions:
self._predictions[k] = [v]
else:
self._predictions[k].append(v)
if not self._annotation_file:
assert groundtruths
for k in self._required_groundtruth_fields:
if k not in groundtruths:
raise ValueError(
'Missing the required key `{}` in groundtruths!'.format(k))
for k, v in six.iteritems(groundtruths):
if k not in self._groundtruths:
self._groundtruths[k] = [v]
else:
self._groundtruths[k].append(v)
class OlnXclassEvaluator(COCOEvaluator):
"""COCO evaluation metric class."""
def __init__(self, annotation_file, include_mask, need_rescale_bboxes=True,
use_category=True, seen_class='all'):
"""Constructs COCO evaluation class.
The class provides the interface to metrics_fn in TPUEstimator. The
_update_op() takes detections from each image and push them to
self.detections. The _evaluate() loads a JSON file in COCO annotation format
as the groundtruths and runs COCO evaluation.
Args:
annotation_file: a JSON file that stores annotations of the eval dataset.
If `annotation_file` is None, groundtruth annotations will be loaded
from the dataloader.
include_mask: a boolean to indicate whether or not to include the mask
eval.
need_rescale_bboxes: If true bboxes in `predictions` will be rescaled back
to absolute values (`image_info` is needed in this case).
use_category: if `False`, treat all object in all classes in one
foreground category.
seen_class: 'all' or 'voc' or 'nonvoc'
"""
super(OlnXclassEvaluator, self).__init__(
annotation_file=annotation_file,
include_mask=include_mask,
need_rescale_bboxes=need_rescale_bboxes)
self._use_category = use_category
self._seen_class = seen_class
self._seen_class_ids = class_utils.coco_split_class_ids(seen_class)
self._metric_names = [
'AP', 'AP50', 'AP75',
'APs', 'APm', 'APl',
'ARmax10', 'ARmax20', 'ARmax50', 'ARmax100', 'ARmax200',
'ARmax10s', 'ARmax10m', 'ARmax10l'
]
if self._seen_class != 'all':
self._metric_names.extend([
'AP_seen', 'AP50_seen', 'AP75_seen',
'APs_seen', 'APm_seen', 'APl_seen',
'ARmax10_seen', 'ARmax20_seen', 'ARmax50_seen',
'ARmax100_seen', 'ARmax200_seen',
'ARmax10s_seen', 'ARmax10m_seen', 'ARmax10l_seen',
'AP_novel', 'AP50_novel', 'AP75_novel',
'APs_novel', 'APm_novel', 'APl_novel',
'ARmax10_novel', 'ARmax20_novel', 'ARmax50_novel',
'ARmax100_novel', 'ARmax200_novel',
'ARmax10s_novel', 'ARmax10m_novel', 'ARmax10l_novel',
])
if self._include_mask:
mask_metric_names = ['mask_' + x for x in self._metric_names]
self._metric_names.extend(mask_metric_names)
self._required_prediction_fields.extend(['detection_masks'])
self._required_groundtruth_fields.extend(['masks'])
self.reset()
def evaluate(self):
"""Evaluates with detections from all images with COCO API.
Returns:
coco_metric: float numpy array with shape [24] representing the
coco-style evaluation metrics (box and mask).
"""
if not self._annotation_file:
logging.info('Thre is no annotation_file in COCOEvaluator.')
gt_dataset = coco_utils.convert_groundtruths_to_coco_dataset(
self._groundtruths)
coco_gt = coco_utils.COCOWrapper(
eval_type=('mask' if self._include_mask else 'box'),
gt_dataset=gt_dataset)
else:
logging.info('Using annotation file: %s', self._annotation_file)
coco_gt = self._coco_gt
coco_predictions = coco_utils.convert_predictions_to_coco_annotations(
self._predictions)
coco_dt = coco_gt.loadRes(predictions=coco_predictions)
image_ids = [ann['image_id'] for ann in coco_predictions]
# Class manipulation: 'all' split samples -> ignored_split = 0.
for idx, ann in enumerate(coco_gt.dataset['annotations']):
coco_gt.dataset['annotations'][idx]['ignored_split'] = 0
coco_eval = cocoeval.OlnCOCOevalXclassWrapper(
coco_gt, coco_dt, iou_type='bbox')
coco_eval.params.maxDets = [10, 20, 50, 100, 200]
coco_eval.params.imgIds = image_ids
coco_eval.params.useCats = 0 if not self._use_category else 1
coco_eval.evaluate()
coco_eval.accumulate()
coco_eval.summarize()
coco_metrics = coco_eval.stats
if self._include_mask:
mcoco_eval = cocoeval.OlnCOCOevalXclassWrapper(
coco_gt, coco_dt, iou_type='segm')
mcoco_eval.params.maxDets = [10, 20, 50, 100, 200]
mcoco_eval.params.imgIds = image_ids
mcoco_eval.params.useCats = 0 if not self._use_category else 1
mcoco_eval.evaluate()
mcoco_eval.accumulate()
mcoco_eval.summarize()
mask_coco_metrics = mcoco_eval.stats
if self._include_mask:
metrics = np.hstack((coco_metrics, mask_coco_metrics))
else:
metrics = coco_metrics
if self._seen_class != 'all':
# for seen class eval, samples of novel_class are ignored.
coco_gt_seen = copy.deepcopy(coco_gt)
for idx, ann in enumerate(coco_gt.dataset['annotations']):
if ann['category_id'] in self._seen_class_ids:
coco_gt_seen.dataset['annotations'][idx]['ignored_split'] = 0
else:
coco_gt_seen.dataset['annotations'][idx]['ignored_split'] = 1
coco_eval_seen = cocoeval.OlnCOCOevalXclassWrapper(
coco_gt_seen, coco_dt, iou_type='bbox')
coco_eval_seen.params.maxDets = [10, 20, 50, 100, 200]
coco_eval_seen.params.imgIds = image_ids
coco_eval_seen.params.useCats = 0 if not self._use_category else 1
coco_eval_seen.evaluate()
coco_eval_seen.accumulate()
coco_eval_seen.summarize()
coco_metrics_seen = coco_eval_seen.stats
if self._include_mask:
mcoco_eval_seen = cocoeval.OlnCOCOevalXclassWrapper(
coco_gt_seen, coco_dt, iou_type='segm')
mcoco_eval_seen.params.maxDets = [10, 20, 50, 100, 200]
mcoco_eval_seen.params.imgIds = image_ids
mcoco_eval_seen.params.useCats = 0 if not self._use_category else 1
mcoco_eval_seen.evaluate()
mcoco_eval_seen.accumulate()
mcoco_eval_seen.summarize()
mask_coco_metrics_seen = mcoco_eval_seen.stats
# for novel class eval, samples of seen_class are ignored.
coco_gt_novel = copy.deepcopy(coco_gt)
for idx, ann in enumerate(coco_gt.dataset['annotations']):
if ann['category_id'] in self._seen_class_ids:
coco_gt_novel.dataset['annotations'][idx]['ignored_split'] = 1
else:
coco_gt_novel.dataset['annotations'][idx]['ignored_split'] = 0
coco_eval_novel = cocoeval.OlnCOCOevalXclassWrapper(
coco_gt_novel, coco_dt, iou_type='bbox')
coco_eval_novel.params.maxDets = [10, 20, 50, 100, 200]
coco_eval_novel.params.imgIds = image_ids
coco_eval_novel.params.useCats = 0 if not self._use_category else 1
coco_eval_novel.evaluate()
coco_eval_novel.accumulate()
coco_eval_novel.summarize()
coco_metrics_novel = coco_eval_novel.stats
if self._include_mask:
mcoco_eval_novel = cocoeval.OlnCOCOevalXclassWrapper(
coco_gt_novel, coco_dt, iou_type='segm')
mcoco_eval_novel.params.maxDets = [10, 20, 50, 100, 200]
mcoco_eval_novel.params.imgIds = image_ids
mcoco_eval_novel.params.useCats = 0 if not self._use_category else 1
mcoco_eval_novel.evaluate()
mcoco_eval_novel.accumulate()
mcoco_eval_novel.summarize()
mask_coco_metrics_novel = mcoco_eval_novel.stats
# Combine all splits.
if self._include_mask:
metrics = np.hstack((
coco_metrics, coco_metrics_seen, coco_metrics_novel,
mask_coco_metrics, mask_coco_metrics_seen, mask_coco_metrics_novel))
else:
metrics = np.hstack((
coco_metrics, coco_metrics_seen, coco_metrics_novel))
# Cleans up the internal variables in order for a fresh eval next time.
self.reset()
metrics_dict = {}
for i, name in enumerate(self._metric_names):
metrics_dict[name] = metrics[i].astype(np.float32)
return metrics_dict
class OlnXdataEvaluator(OlnXclassEvaluator):
"""COCO evaluation metric class."""
def __init__(self, annotation_file, include_mask, need_rescale_bboxes=True,
use_category=True, seen_class='all'):
"""Constructs COCO evaluation class.
The class provides the interface to metrics_fn in TPUEstimator. The
_update_op() takes detections from each image and push them to
self.detections. The _evaluate() loads a JSON file in COCO annotation format
as the groundtruths and runs COCO evaluation.
Args:
annotation_file: a JSON file that stores annotations of the eval dataset.
If `annotation_file` is None, groundtruth annotations will be loaded
from the dataloader.
include_mask: a boolean to indicate whether or not to include the mask
eval.
need_rescale_bboxes: If true bboxes in `predictions` will be rescaled back
to absolute values (`image_info` is needed in this case).
use_category: if `False`, treat all object in all classes in one
foreground category.
seen_class: 'all' or 'voc' or 'nonvoc'
"""
super(OlnXdataEvaluator, self).__init__(
annotation_file=annotation_file,
include_mask=include_mask,
need_rescale_bboxes=need_rescale_bboxes,
use_category=False,
seen_class='all')
def evaluate(self):
"""Evaluates with detections from all images with COCO API.
Returns:
coco_metric: float numpy array with shape [24] representing the
coco-style evaluation metrics (box and mask).
"""
if not self._annotation_file:
logging.info('Thre is no annotation_file in COCOEvaluator.')
gt_dataset = coco_utils.convert_groundtruths_to_coco_dataset(
self._groundtruths)
coco_gt = coco_utils.COCOWrapper(
eval_type=('mask' if self._include_mask else 'box'),
gt_dataset=gt_dataset)
else:
logging.info('Using annotation file: %s', self._annotation_file)
coco_gt = self._coco_gt
coco_predictions = coco_utils.convert_predictions_to_coco_annotations(
self._predictions)
coco_dt = coco_gt.loadRes(predictions=coco_predictions)
image_ids = [ann['image_id'] for ann in coco_predictions]
# Class manipulation: 'all' split samples -> ignored_split = 0.
for idx, _ in enumerate(coco_gt.dataset['annotations']):
coco_gt.dataset['annotations'][idx]['ignored_split'] = 0
coco_eval = cocoeval.OlnCOCOevalWrapper(coco_gt, coco_dt, iou_type='bbox')
coco_eval.params.maxDets = [10, 20, 50, 100, 200]
coco_eval.params.imgIds = image_ids
coco_eval.params.useCats = 0 if not self._use_category else 1
coco_eval.evaluate()
coco_eval.accumulate()
coco_eval.summarize()
coco_metrics = coco_eval.stats
if self._include_mask:
mcoco_eval = cocoeval.OlnCOCOevalWrapper(coco_gt, coco_dt,
iou_type='segm')
mcoco_eval.params.maxDets = [10, 20, 50, 100, 200]
mcoco_eval.params.imgIds = image_ids
mcoco_eval.params.useCats = 0 if not self._use_category else 1
mcoco_eval.evaluate()
mcoco_eval.accumulate()
mcoco_eval.summarize()
mask_coco_metrics = mcoco_eval.stats
if self._include_mask:
metrics = np.hstack((coco_metrics, mask_coco_metrics))
else:
metrics = coco_metrics
# Cleans up the internal variables in order for a fresh eval next time.
self.reset()
metrics_dict = {}
for i, name in enumerate(self._metric_names):
metrics_dict[name] = metrics[i].astype(np.float32)
return metrics_dict
class ShapeMaskCOCOEvaluator(COCOEvaluator):
"""COCO evaluation metric class for ShapeMask."""
def __init__(self, mask_eval_class, **kwargs):
"""Constructs COCO evaluation class.
The class provides the interface to metrics_fn in TPUEstimator. The
_update_op() takes detections from each image and push them to
self.detections. The _evaluate() loads a JSON file in COCO annotation format
as the groundtruths and runs COCO evaluation.
Args:
mask_eval_class: the set of classes for mask evaluation.
**kwargs: other keyword arguments passed to the parent class initializer.
"""
super(ShapeMaskCOCOEvaluator, self).__init__(**kwargs)
self._mask_eval_class = mask_eval_class
self._eval_categories = class_utils.coco_split_class_ids(mask_eval_class)
if mask_eval_class != 'all':
self._metric_names = [
x.replace('mask', 'novel_mask') for x in self._metric_names
]
def evaluate(self):
"""Evaluates with detections from all images with COCO API.
Returns:
coco_metric: float numpy array with shape [24] representing the
coco-style evaluation metrics (box and mask).
"""
if not self._annotation_file:
gt_dataset = coco_utils.convert_groundtruths_to_coco_dataset(
self._groundtruths)
coco_gt = coco_utils.COCOWrapper(
eval_type=('mask' if self._include_mask else 'box'),
gt_dataset=gt_dataset)
else:
coco_gt = self._coco_gt
coco_predictions = coco_utils.convert_predictions_to_coco_annotations(
self._predictions)
coco_dt = coco_gt.loadRes(predictions=coco_predictions)
image_ids = [ann['image_id'] for ann in coco_predictions]
coco_eval = cocoeval.COCOeval(coco_gt, coco_dt, iouType='bbox')
coco_eval.params.imgIds = image_ids
coco_eval.evaluate()
coco_eval.accumulate()
coco_eval.summarize()
coco_metrics = coco_eval.stats
if self._include_mask:
mcoco_eval = cocoeval.COCOeval(coco_gt, coco_dt, iouType='segm')
mcoco_eval.params.imgIds = image_ids
mcoco_eval.evaluate()
mcoco_eval.accumulate()
mcoco_eval.summarize()
if self._mask_eval_class == 'all':
metrics = np.hstack((coco_metrics, mcoco_eval.stats))
else:
mask_coco_metrics = mcoco_eval.category_stats
val_catg_idx = np.isin(mcoco_eval.params.catIds, self._eval_categories)
# Gather the valid evaluation of the eval categories.
if np.any(val_catg_idx):
mean_val_metrics = []
for mid in range(len(self._metric_names) // 2):
mean_val_metrics.append(
np.nanmean(mask_coco_metrics[mid][val_catg_idx]))
mean_val_metrics = np.array(mean_val_metrics)
else:
mean_val_metrics = np.zeros(len(self._metric_names) // 2)
metrics = np.hstack((coco_metrics, mean_val_metrics))
else:
metrics = coco_metrics
# Cleans up the internal variables in order for a fresh eval next time.
self.reset()
metrics_dict = {}
for i, name in enumerate(self._metric_names):
metrics_dict[name] = metrics[i].astype(np.float32)
return metrics_dict
|