Spaces:
Sleeping
Sleeping
File size: 2,169 Bytes
5672777 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 |
# Copyright 2023 The TensorFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Evaluator factory."""
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
from official.legacy.detection.evaluation import coco_evaluator
def evaluator_generator(params):
"""Generator function for various evaluators."""
if params.type == 'box':
evaluator = coco_evaluator.COCOEvaluator(
annotation_file=params.val_json_file, include_mask=False)
elif params.type == 'box_and_mask':
evaluator = coco_evaluator.COCOEvaluator(
annotation_file=params.val_json_file, include_mask=True)
elif params.type == 'oln_xclass_box':
evaluator = coco_evaluator.OlnXclassEvaluator(
annotation_file=params.val_json_file, include_mask=False,
use_category=False, seen_class=params.seen_class,)
elif params.type == 'oln_xclass_box_and_mask':
evaluator = coco_evaluator.OlnXclassEvaluator(
annotation_file=params.val_json_file, include_mask=True,
use_category=False, seen_class=params.seen_class,)
elif params.type == 'oln_xdata_box':
evaluator = coco_evaluator.OlnXdataEvaluator(
annotation_file=params.val_json_file, include_mask=False,
use_category=False, seen_class='all',)
elif params.type == 'shapemask_box_and_mask':
evaluator = coco_evaluator.ShapeMaskCOCOEvaluator(
mask_eval_class=params.mask_eval_class,
annotation_file=params.val_json_file, include_mask=True)
else:
raise ValueError('Evaluator %s is not supported.' % params.type)
return coco_evaluator.MetricWrapper(evaluator)
|