Spaces:
Sleeping
Sleeping
File size: 5,986 Bytes
5672777 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 |
# Copyright 2023 The TensorFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Feature Pyramid Networks.
Feature Pyramid Networks were proposed in:
[1] Tsung-Yi Lin, Piotr Dollar, Ross Girshick, Kaiming He, Bharath Hariharan,
, and Serge Belongie
Feature Pyramid Networks for Object Detection. CVPR 2017.
"""
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import functools
import tensorflow as tf, tf_keras
from official.legacy.detection.modeling.architecture import nn_ops
from official.legacy.detection.ops import spatial_transform_ops
class Fpn(object):
"""Feature pyramid networks."""
def __init__(self,
min_level=3,
max_level=7,
fpn_feat_dims=256,
use_separable_conv=False,
activation='relu',
use_batch_norm=True,
norm_activation=nn_ops.norm_activation_builder(
activation='relu')):
"""FPN initialization function.
Args:
min_level: `int` minimum level in FPN output feature maps.
max_level: `int` maximum level in FPN output feature maps.
fpn_feat_dims: `int` number of filters in FPN layers.
use_separable_conv: `bool`, if True use separable convolution for
convolution in FPN layers.
activation: the activation function.
use_batch_norm: 'bool', indicating whether batchnorm layers are added.
norm_activation: an operation that includes a normalization layer
followed by an optional activation layer.
"""
self._min_level = min_level
self._max_level = max_level
self._fpn_feat_dims = fpn_feat_dims
if use_separable_conv:
self._conv2d_op = functools.partial(
tf_keras.layers.SeparableConv2D, depth_multiplier=1)
else:
self._conv2d_op = tf_keras.layers.Conv2D
if activation == 'relu':
self._activation_op = tf.nn.relu
elif activation == 'swish':
self._activation_op = tf.nn.swish
else:
raise ValueError('Unsupported activation `{}`.'.format(activation))
self._use_batch_norm = use_batch_norm
self._norm_activation = norm_activation
self._norm_activations = {}
self._lateral_conv2d_op = {}
self._post_hoc_conv2d_op = {}
self._coarse_conv2d_op = {}
for level in range(self._min_level, self._max_level + 1):
if self._use_batch_norm:
self._norm_activations[level] = norm_activation(
use_activation=False, name='p%d-bn' % level)
self._lateral_conv2d_op[level] = self._conv2d_op(
filters=self._fpn_feat_dims,
kernel_size=(1, 1),
padding='same',
name='l%d' % level)
self._post_hoc_conv2d_op[level] = self._conv2d_op(
filters=self._fpn_feat_dims,
strides=(1, 1),
kernel_size=(3, 3),
padding='same',
name='post_hoc_d%d' % level)
self._coarse_conv2d_op[level] = self._conv2d_op(
filters=self._fpn_feat_dims,
strides=(2, 2),
kernel_size=(3, 3),
padding='same',
name='p%d' % level)
def __call__(self, multilevel_features, is_training=None):
"""Returns the FPN features for a given multilevel features.
Args:
multilevel_features: a `dict` containing `int` keys for continuous feature
levels, e.g., [2, 3, 4, 5]. The values are corresponding features with
shape [batch_size, height_l, width_l, num_filters].
is_training: `bool` if True, the model is in training mode.
Returns:
a `dict` containing `int` keys for continuous feature levels
[min_level, min_level + 1, ..., max_level]. The values are corresponding
FPN features with shape [batch_size, height_l, width_l, fpn_feat_dims].
"""
input_levels = list(multilevel_features.keys())
if min(input_levels) > self._min_level:
raise ValueError(
'The minimum backbone level %d should be '%(min(input_levels)) +
'less or equal to FPN minimum level %d.:'%(self._min_level))
backbone_max_level = min(max(input_levels), self._max_level)
with tf.name_scope('fpn'):
# Adds lateral connections.
feats_lateral = {}
for level in range(self._min_level, backbone_max_level + 1):
feats_lateral[level] = self._lateral_conv2d_op[level](
multilevel_features[level])
# Adds top-down path.
feats = {backbone_max_level: feats_lateral[backbone_max_level]}
for level in range(backbone_max_level - 1, self._min_level - 1, -1):
feats[level] = spatial_transform_ops.nearest_upsampling(
feats[level + 1], 2) + feats_lateral[level]
# Adds post-hoc 3x3 convolution kernel.
for level in range(self._min_level, backbone_max_level + 1):
feats[level] = self._post_hoc_conv2d_op[level](feats[level])
# Adds coarser FPN levels introduced for RetinaNet.
for level in range(backbone_max_level + 1, self._max_level + 1):
feats_in = feats[level - 1]
if level > backbone_max_level + 1:
feats_in = self._activation_op(feats_in)
feats[level] = self._coarse_conv2d_op[level](feats_in)
if self._use_batch_norm:
# Adds batch_norm layer.
for level in range(self._min_level, self._max_level + 1):
feats[level] = self._norm_activations[level](
feats[level], is_training=is_training)
return feats
|