File size: 5,986 Bytes
5672777
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
# Copyright 2023 The TensorFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

"""Feature Pyramid Networks.

Feature Pyramid Networks were proposed in:
[1] Tsung-Yi Lin, Piotr Dollar, Ross Girshick, Kaiming He, Bharath Hariharan,
    , and Serge Belongie
    Feature Pyramid Networks for Object Detection. CVPR 2017.
"""

from __future__ import absolute_import
from __future__ import division
from __future__ import print_function

import functools

import tensorflow as tf, tf_keras

from official.legacy.detection.modeling.architecture import nn_ops
from official.legacy.detection.ops import spatial_transform_ops


class Fpn(object):
  """Feature pyramid networks."""

  def __init__(self,
               min_level=3,
               max_level=7,
               fpn_feat_dims=256,
               use_separable_conv=False,
               activation='relu',
               use_batch_norm=True,
               norm_activation=nn_ops.norm_activation_builder(
                   activation='relu')):
    """FPN initialization function.

    Args:
      min_level: `int` minimum level in FPN output feature maps.
      max_level: `int` maximum level in FPN output feature maps.
      fpn_feat_dims: `int` number of filters in FPN layers.
      use_separable_conv: `bool`, if True use separable convolution for
        convolution in FPN layers.
      activation: the activation function.
      use_batch_norm: 'bool', indicating whether batchnorm layers are added.
      norm_activation: an operation that includes a normalization layer
        followed by an optional activation layer.
    """
    self._min_level = min_level
    self._max_level = max_level
    self._fpn_feat_dims = fpn_feat_dims
    if use_separable_conv:
      self._conv2d_op = functools.partial(
          tf_keras.layers.SeparableConv2D, depth_multiplier=1)
    else:
      self._conv2d_op = tf_keras.layers.Conv2D
    if activation == 'relu':
      self._activation_op = tf.nn.relu
    elif activation == 'swish':
      self._activation_op = tf.nn.swish
    else:
      raise ValueError('Unsupported activation `{}`.'.format(activation))
    self._use_batch_norm = use_batch_norm
    self._norm_activation = norm_activation

    self._norm_activations = {}
    self._lateral_conv2d_op = {}
    self._post_hoc_conv2d_op = {}
    self._coarse_conv2d_op = {}
    for level in range(self._min_level, self._max_level + 1):
      if self._use_batch_norm:
        self._norm_activations[level] = norm_activation(
            use_activation=False, name='p%d-bn' % level)
      self._lateral_conv2d_op[level] = self._conv2d_op(
          filters=self._fpn_feat_dims,
          kernel_size=(1, 1),
          padding='same',
          name='l%d' % level)
      self._post_hoc_conv2d_op[level] = self._conv2d_op(
          filters=self._fpn_feat_dims,
          strides=(1, 1),
          kernel_size=(3, 3),
          padding='same',
          name='post_hoc_d%d' % level)
      self._coarse_conv2d_op[level] = self._conv2d_op(
          filters=self._fpn_feat_dims,
          strides=(2, 2),
          kernel_size=(3, 3),
          padding='same',
          name='p%d' % level)

  def __call__(self, multilevel_features, is_training=None):
    """Returns the FPN features for a given multilevel features.

    Args:
      multilevel_features: a `dict` containing `int` keys for continuous feature
        levels, e.g., [2, 3, 4, 5]. The values are corresponding features with
        shape [batch_size, height_l, width_l, num_filters].
      is_training: `bool` if True, the model is in training mode.

    Returns:
      a `dict` containing `int` keys for continuous feature levels
      [min_level, min_level + 1, ..., max_level]. The values are corresponding
      FPN features with shape [batch_size, height_l, width_l, fpn_feat_dims].
    """
    input_levels = list(multilevel_features.keys())
    if min(input_levels) > self._min_level:
      raise ValueError(
          'The minimum backbone level %d should be '%(min(input_levels)) +
          'less or equal to FPN minimum level %d.:'%(self._min_level))
    backbone_max_level = min(max(input_levels), self._max_level)
    with tf.name_scope('fpn'):
      # Adds lateral connections.
      feats_lateral = {}
      for level in range(self._min_level, backbone_max_level + 1):
        feats_lateral[level] = self._lateral_conv2d_op[level](
            multilevel_features[level])

      # Adds top-down path.
      feats = {backbone_max_level: feats_lateral[backbone_max_level]}
      for level in range(backbone_max_level - 1, self._min_level - 1, -1):
        feats[level] = spatial_transform_ops.nearest_upsampling(
            feats[level + 1], 2) + feats_lateral[level]

      # Adds post-hoc 3x3 convolution kernel.
      for level in range(self._min_level, backbone_max_level + 1):
        feats[level] = self._post_hoc_conv2d_op[level](feats[level])

      # Adds coarser FPN levels introduced for RetinaNet.
      for level in range(backbone_max_level + 1, self._max_level + 1):
        feats_in = feats[level - 1]
        if level > backbone_max_level + 1:
          feats_in = self._activation_op(feats_in)
        feats[level] = self._coarse_conv2d_op[level](feats_in)
      if self._use_batch_norm:
        # Adds batch_norm layer.
        for level in range(self._min_level, self._max_level + 1):
          feats[level] = self._norm_activations[level](
              feats[level], is_training=is_training)
    return feats