Spaces:
Sleeping
Sleeping
File size: 13,169 Bytes
5672777 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 |
# Copyright 2023 The TensorFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Contains definitions for the post-activation form of Residual Networks.
Residual networks (ResNets) were proposed in:
[1] Kaiming He, Xiangyu Zhang, Shaoqing Ren, Jian Sun
Deep Residual Learning for Image Recognition. arXiv:1512.03385
"""
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import tensorflow as tf, tf_keras
from official.legacy.detection.modeling.architecture import nn_ops
# TODO(b/140112644): Refactor the code with Keras style, i.e. build and call.
class Resnet(object):
"""Class to build ResNet family model."""
def __init__(
self,
resnet_depth,
activation='relu',
norm_activation=nn_ops.norm_activation_builder(activation='relu'),
data_format='channels_last'):
"""ResNet initialization function.
Args:
resnet_depth: `int` depth of ResNet backbone model.
activation: the activation function.
norm_activation: an operation that includes a normalization layer followed
by an optional activation layer.
data_format: `str` either "channels_first" for `[batch, channels, height,
width]` or "channels_last for `[batch, height, width, channels]`.
"""
self._resnet_depth = resnet_depth
if activation == 'relu':
self._activation_op = tf.nn.relu
elif activation == 'swish':
self._activation_op = tf.nn.swish
else:
raise ValueError('Unsupported activation `{}`.'.format(activation))
self._norm_activation = norm_activation
self._data_format = data_format
model_params = {
10: {
'block': self.residual_block,
'layers': [1, 1, 1, 1]
},
18: {
'block': self.residual_block,
'layers': [2, 2, 2, 2]
},
34: {
'block': self.residual_block,
'layers': [3, 4, 6, 3]
},
50: {
'block': self.bottleneck_block,
'layers': [3, 4, 6, 3]
},
101: {
'block': self.bottleneck_block,
'layers': [3, 4, 23, 3]
},
152: {
'block': self.bottleneck_block,
'layers': [3, 8, 36, 3]
},
200: {
'block': self.bottleneck_block,
'layers': [3, 24, 36, 3]
}
}
if resnet_depth not in model_params:
valid_resnet_depths = ', '.join(
[str(depth) for depth in sorted(model_params.keys())])
raise ValueError(
'The resnet_depth should be in [%s]. Not a valid resnet_depth:' %
(valid_resnet_depths), self._resnet_depth)
params = model_params[resnet_depth]
self._resnet_fn = self.resnet_v1_generator(params['block'],
params['layers'])
def __call__(self, inputs, is_training=None):
"""Returns the ResNet model for a given size and number of output classes.
Args:
inputs: a `Tesnor` with shape [batch_size, height, width, 3] representing
a batch of images.
is_training: `bool` if True, the model is in training mode.
Returns:
a `dict` containing `int` keys for continuous feature levels [2, 3, 4, 5].
The values are corresponding feature hierarchy in ResNet with shape
[batch_size, height_l, width_l, num_filters].
"""
with tf.name_scope('resnet%s' % self._resnet_depth):
return self._resnet_fn(inputs, is_training)
def fixed_padding(self, inputs, kernel_size):
"""Pads the input along the spatial dimensions independently of input size.
Args:
inputs: `Tensor` of size `[batch, channels, height, width]` or `[batch,
height, width, channels]` depending on `data_format`.
kernel_size: `int` kernel size to be used for `conv2d` or max_pool2d`
operations. Should be a positive integer.
Returns:
A padded `Tensor` of the same `data_format` with size either intact
(if `kernel_size == 1`) or padded (if `kernel_size > 1`).
"""
pad_total = kernel_size - 1
pad_beg = pad_total // 2
pad_end = pad_total - pad_beg
if self._data_format == 'channels_first':
padded_inputs = tf.pad(
tensor=inputs,
paddings=[[0, 0], [0, 0], [pad_beg, pad_end], [pad_beg, pad_end]])
else:
padded_inputs = tf.pad(
tensor=inputs,
paddings=[[0, 0], [pad_beg, pad_end], [pad_beg, pad_end], [0, 0]])
return padded_inputs
def conv2d_fixed_padding(self, inputs, filters, kernel_size, strides):
"""Strided 2-D convolution with explicit padding.
The padding is consistent and is based only on `kernel_size`, not on the
dimensions of `inputs` (as opposed to using `tf.layers.conv2d` alone).
Args:
inputs: `Tensor` of size `[batch, channels, height_in, width_in]`.
filters: `int` number of filters in the convolution.
kernel_size: `int` size of the kernel to be used in the convolution.
strides: `int` strides of the convolution.
Returns:
A `Tensor` of shape `[batch, filters, height_out, width_out]`.
"""
if strides > 1:
inputs = self.fixed_padding(inputs, kernel_size)
return tf_keras.layers.Conv2D(
filters=filters,
kernel_size=kernel_size,
strides=strides,
padding=('SAME' if strides == 1 else 'VALID'),
use_bias=False,
kernel_initializer=tf.initializers.VarianceScaling(),
data_format=self._data_format)(
inputs=inputs)
def residual_block(self,
inputs,
filters,
strides,
use_projection=False,
is_training=None):
"""Standard building block for residual networks with BN after convolutions.
Args:
inputs: `Tensor` of size `[batch, channels, height, width]`.
filters: `int` number of filters for the first two convolutions. Note that
the third and final convolution will use 4 times as many filters.
strides: `int` block stride. If greater than 1, this block will ultimately
downsample the input.
use_projection: `bool` for whether this block should use a projection
shortcut (versus the default identity shortcut). This is usually `True`
for the first block of a block group, which may change the number of
filters and the resolution.
is_training: `bool` if True, the model is in training mode.
Returns:
The output `Tensor` of the block.
"""
shortcut = inputs
if use_projection:
# Projection shortcut in first layer to match filters and strides
shortcut = self.conv2d_fixed_padding(
inputs=inputs, filters=filters, kernel_size=1, strides=strides)
shortcut = self._norm_activation(use_activation=False)(
shortcut, is_training=is_training)
inputs = self.conv2d_fixed_padding(
inputs=inputs, filters=filters, kernel_size=3, strides=strides)
inputs = self._norm_activation()(inputs, is_training=is_training)
inputs = self.conv2d_fixed_padding(
inputs=inputs, filters=filters, kernel_size=3, strides=1)
inputs = self._norm_activation(
use_activation=False, init_zero=True)(
inputs, is_training=is_training)
return self._activation_op(inputs + shortcut)
def bottleneck_block(self,
inputs,
filters,
strides,
use_projection=False,
is_training=None):
"""Bottleneck block variant for residual networks with BN after convolutions.
Args:
inputs: `Tensor` of size `[batch, channels, height, width]`.
filters: `int` number of filters for the first two convolutions. Note that
the third and final convolution will use 4 times as many filters.
strides: `int` block stride. If greater than 1, this block will ultimately
downsample the input.
use_projection: `bool` for whether this block should use a projection
shortcut (versus the default identity shortcut). This is usually `True`
for the first block of a block group, which may change the number of
filters and the resolution.
is_training: `bool` if True, the model is in training mode.
Returns:
The output `Tensor` of the block.
"""
shortcut = inputs
if use_projection:
# Projection shortcut only in first block within a group. Bottleneck
# blocks end with 4 times the number of filters.
filters_out = 4 * filters
shortcut = self.conv2d_fixed_padding(
inputs=inputs, filters=filters_out, kernel_size=1, strides=strides)
shortcut = self._norm_activation(use_activation=False)(
shortcut, is_training=is_training)
inputs = self.conv2d_fixed_padding(
inputs=inputs, filters=filters, kernel_size=1, strides=1)
inputs = self._norm_activation()(inputs, is_training=is_training)
inputs = self.conv2d_fixed_padding(
inputs=inputs, filters=filters, kernel_size=3, strides=strides)
inputs = self._norm_activation()(inputs, is_training=is_training)
inputs = self.conv2d_fixed_padding(
inputs=inputs, filters=4 * filters, kernel_size=1, strides=1)
inputs = self._norm_activation(
use_activation=False, init_zero=True)(
inputs, is_training=is_training)
return self._activation_op(inputs + shortcut)
def block_group(self, inputs, filters, block_fn, blocks, strides, name,
is_training):
"""Creates one group of blocks for the ResNet model.
Args:
inputs: `Tensor` of size `[batch, channels, height, width]`.
filters: `int` number of filters for the first convolution of the layer.
block_fn: `function` for the block to use within the model
blocks: `int` number of blocks contained in the layer.
strides: `int` stride to use for the first convolution of the layer. If
greater than 1, this layer will downsample the input.
name: `str`name for the Tensor output of the block layer.
is_training: `bool` if True, the model is in training mode.
Returns:
The output `Tensor` of the block layer.
"""
# Only the first block per block_group uses projection shortcut and strides.
inputs = block_fn(
inputs, filters, strides, use_projection=True, is_training=is_training)
for _ in range(1, blocks):
inputs = block_fn(inputs, filters, 1, is_training=is_training)
return tf.identity(inputs, name)
def resnet_v1_generator(self, block_fn, layers):
"""Generator for ResNet v1 models.
Args:
block_fn: `function` for the block to use within the model. Either
`residual_block` or `bottleneck_block`.
layers: list of 4 `int`s denoting the number of blocks to include in each
of the 4 block groups. Each group consists of blocks that take inputs of
the same resolution.
Returns:
Model `function` that takes in `inputs` and `is_training` and returns the
output `Tensor` of the ResNet model.
"""
def model(inputs, is_training=None):
"""Creation of the model graph."""
inputs = self.conv2d_fixed_padding(
inputs=inputs, filters=64, kernel_size=7, strides=2)
inputs = tf.identity(inputs, 'initial_conv')
inputs = self._norm_activation()(inputs, is_training=is_training)
inputs = tf_keras.layers.MaxPool2D(
pool_size=3, strides=2, padding='SAME',
data_format=self._data_format)(
inputs)
inputs = tf.identity(inputs, 'initial_max_pool')
c2 = self.block_group(
inputs=inputs,
filters=64,
block_fn=block_fn,
blocks=layers[0],
strides=1,
name='block_group1',
is_training=is_training)
c3 = self.block_group(
inputs=c2,
filters=128,
block_fn=block_fn,
blocks=layers[1],
strides=2,
name='block_group2',
is_training=is_training)
c4 = self.block_group(
inputs=c3,
filters=256,
block_fn=block_fn,
blocks=layers[2],
strides=2,
name='block_group3',
is_training=is_training)
c5 = self.block_group(
inputs=c4,
filters=512,
block_fn=block_fn,
blocks=layers[3],
strides=2,
name='block_group4',
is_training=is_training)
return {2: c2, 3: c3, 4: c4, 5: c5}
return model
|