File size: 30,213 Bytes
5672777
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
# Copyright 2023 The TensorFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

"""Losses used for detection models."""

from __future__ import absolute_import
from __future__ import division
from __future__ import print_function

from absl import logging
import tensorflow as tf, tf_keras


def focal_loss(logits, targets, alpha, gamma, normalizer):
  """Compute the focal loss between `logits` and the golden `target` values.

  Focal loss = -(1-pt)^gamma * log(pt)
  where pt is the probability of being classified to the true class.

  Args:
    logits: A float32 tensor of size
      [batch, height_in, width_in, num_predictions].
    targets: A float32 tensor of size
      [batch, height_in, width_in, num_predictions].
    alpha: A float32 scalar multiplying alpha to the loss from positive examples
      and (1-alpha) to the loss from negative examples.
    gamma: A float32 scalar modulating loss from hard and easy examples.
    normalizer: A float32 scalar normalizes the total loss from all examples.

  Returns:
    loss: A float32 Tensor of size [batch, height_in, width_in, num_predictions]
      representing normalized loss on the prediction map.
  """
  with tf.name_scope('focal_loss'):
    positive_label_mask = tf.math.equal(targets, 1.0)
    cross_entropy = (
        tf.nn.sigmoid_cross_entropy_with_logits(labels=targets, logits=logits))
    # Below are comments/derivations for computing modulator.
    # For brevity, let x = logits,  z = targets, r = gamma, and p_t = sigmod(x)
    # for positive samples and 1 - sigmoid(x) for negative examples.
    #
    # The modulator, defined as (1 - P_t)^r, is a critical part in focal loss
    # computation. For r > 0, it puts more weights on hard examples, and less
    # weights on easier ones. However if it is directly computed as (1 - P_t)^r,
    # its back-propagation is not stable when r < 1. The implementation here
    # resolves the issue.
    #
    # For positive samples (labels being 1),
    #    (1 - p_t)^r
    #  = (1 - sigmoid(x))^r
    #  = (1 - (1 / (1 + exp(-x))))^r
    #  = (exp(-x) / (1 + exp(-x)))^r
    #  = exp(log((exp(-x) / (1 + exp(-x)))^r))
    #  = exp(r * log(exp(-x)) - r * log(1 + exp(-x)))
    #  = exp(- r * x - r * log(1 + exp(-x)))
    #
    # For negative samples (labels being 0),
    #    (1 - p_t)^r
    #  = (sigmoid(x))^r
    #  = (1 / (1 + exp(-x)))^r
    #  = exp(log((1 / (1 + exp(-x)))^r))
    #  = exp(-r * log(1 + exp(-x)))
    #
    # Therefore one unified form for positive (z = 1) and negative (z = 0)
    # samples is:
    #      (1 - p_t)^r = exp(-r * z * x - r * log(1 + exp(-x))).
    neg_logits = -1.0 * logits
    modulator = tf.math.exp(gamma * targets * neg_logits -
                            gamma * tf.math.log1p(tf.math.exp(neg_logits)))
    loss = modulator * cross_entropy
    weighted_loss = tf.where(positive_label_mask, alpha * loss,
                             (1.0 - alpha) * loss)
    weighted_loss /= normalizer
  return weighted_loss


class RpnScoreLoss(object):
  """Region Proposal Network score loss function."""

  def __init__(self, params):
    self._rpn_batch_size_per_im = params.rpn_batch_size_per_im
    self._binary_crossentropy = tf_keras.losses.BinaryCrossentropy(
        reduction=tf_keras.losses.Reduction.SUM, from_logits=True)

  def __call__(self, score_outputs, labels):
    """Computes total RPN detection loss.

    Computes total RPN detection loss including box and score from all levels.

    Args:
      score_outputs: an OrderDict with keys representing levels and values
        representing scores in [batch_size, height, width, num_anchors].
      labels: the dictionary that returned from dataloader that includes
        groundturth targets.

    Returns:
      rpn_score_loss: a scalar tensor representing total score loss.
    """
    with tf.name_scope('rpn_loss'):
      levels = sorted(score_outputs.keys())

      score_losses = []
      for level in levels:
        score_losses.append(
            self._rpn_score_loss(
                score_outputs[level],
                labels[level],
                normalizer=tf.cast(
                    tf.shape(score_outputs[level])[0] *
                    self._rpn_batch_size_per_im, dtype=tf.float32)))

      # Sums per level losses to total loss.
      return tf.math.add_n(score_losses)

  def _rpn_score_loss(self, score_outputs, score_targets, normalizer=1.0):
    """Computes score loss."""
    # score_targets has three values:
    # (1) score_targets[i]=1, the anchor is a positive sample.
    # (2) score_targets[i]=0, negative.
    # (3) score_targets[i]=-1, the anchor is don't care (ignore).
    with tf.name_scope('rpn_score_loss'):
      mask = tf.math.logical_or(tf.math.equal(score_targets, 1),
                                tf.math.equal(score_targets, 0))

      score_targets = tf.math.maximum(score_targets,
                                      tf.zeros_like(score_targets))

      score_targets = tf.expand_dims(score_targets, axis=-1)
      score_outputs = tf.expand_dims(score_outputs, axis=-1)
      score_loss = self._binary_crossentropy(
          score_targets, score_outputs, sample_weight=mask)

      score_loss /= normalizer
      return score_loss


class RpnBoxLoss(object):
  """Region Proposal Network box regression loss function."""

  def __init__(self, params):
    logging.info('RpnBoxLoss huber_loss_delta %s', params.huber_loss_delta)
    # The delta is typically around the mean value of regression target.
    # for instances, the regression targets of 512x512 input with 6 anchors on
    # P2-P6 pyramid is about [0.1, 0.1, 0.2, 0.2].
    self._huber_loss = tf_keras.losses.Huber(
        delta=params.huber_loss_delta, reduction=tf_keras.losses.Reduction.SUM)

  def __call__(self, box_outputs, labels):
    """Computes total RPN detection loss.

    Computes total RPN detection loss including box and score from all levels.

    Args:
      box_outputs: an OrderDict with keys representing levels and values
        representing box regression targets in
        [batch_size, height, width, num_anchors * 4].
      labels: the dictionary that returned from dataloader that includes
        groundturth targets.

    Returns:
      rpn_box_loss: a scalar tensor representing total box regression loss.
    """
    with tf.name_scope('rpn_loss'):
      levels = sorted(box_outputs.keys())

      box_losses = []
      for level in levels:
        box_losses.append(self._rpn_box_loss(box_outputs[level], labels[level]))

      # Sum per level losses to total loss.
      return tf.add_n(box_losses)

  def _rpn_box_loss(self, box_outputs, box_targets, normalizer=1.0):
    """Computes box regression loss."""
    with tf.name_scope('rpn_box_loss'):
      mask = tf.cast(tf.not_equal(box_targets, 0.0), dtype=tf.float32)
      box_targets = tf.expand_dims(box_targets, axis=-1)
      box_outputs = tf.expand_dims(box_outputs, axis=-1)
      box_loss = self._huber_loss(box_targets, box_outputs, sample_weight=mask)
      # The loss is normalized by the sum of non-zero weights and additional
      # normalizer provided by the function caller. Using + 0.01 here to avoid
      # division by zero.
      box_loss /= normalizer * (tf.reduce_sum(mask) + 0.01)
      return box_loss


class OlnRpnCenterLoss(object):
  """Object Localization Network RPN centerness regression loss function."""

  def __init__(self):
    self._l1_loss = tf_keras.losses.MeanAbsoluteError(
        reduction=tf_keras.losses.Reduction.SUM)

  def __call__(self, center_outputs, labels):
    """Computes total RPN centerness regression loss.

    Computes total RPN centerness score regression loss from all levels.

    Args:
      center_outputs: an OrderDict with keys representing levels and values
        representing anchor centerness regression targets in
        [batch_size, height, width, num_anchors * 4].
      labels: the dictionary that returned from dataloader that includes
        groundturth targets.

    Returns:
      rpn_center_loss: a scalar tensor representing total centerness regression
        loss.
    """
    with tf.name_scope('rpn_loss'):
      # Normalizer.
      levels = sorted(center_outputs.keys())
      num_valid = 0
      # 0<pos<1, neg=0, ign=-1
      for level in levels:
        num_valid += tf.reduce_sum(tf.cast(
            tf.greater(labels[level], -1.0), tf.float32))  # in and out of box
      num_valid += 1e-12

      # Centerness loss over multi levels.
      center_losses = []
      for level in levels:
        center_losses.append(
            self._rpn_center_l1_loss(
                center_outputs[level], labels[level],
                normalizer=num_valid))

      # Sum per level losses to total loss.
      return tf.add_n(center_losses)

  def _rpn_center_l1_loss(self, center_outputs, center_targets,
                          normalizer=1.0):
    """Computes centerness regression loss."""
    # for instances, the regression targets of 512x512 input with 6 anchors on
    # P2-P6 pyramid is about [0.1, 0.1, 0.2, 0.2].
    with tf.name_scope('rpn_center_loss'):

      # mask = tf.greater(center_targets, 0.0)  # inside box only.
      mask = tf.greater(center_targets, -1.0)  # in and out of box.
      center_targets = tf.maximum(center_targets, tf.zeros_like(center_targets))
      center_outputs = tf.sigmoid(center_outputs)
      center_targets = tf.expand_dims(center_targets, -1)
      center_outputs = tf.expand_dims(center_outputs, -1)
      mask = tf.cast(mask, dtype=tf.float32)
      center_loss = self._l1_loss(center_targets, center_outputs,
                                  sample_weight=mask)
      center_loss /= normalizer
      return center_loss


class OlnRpnIoULoss(object):
  """Object Localization Network RPN box-lrtb regression iou loss function."""

  def __call__(self, box_outputs, labels, center_targets):
    """Computes total RPN detection loss.

    Computes total RPN box regression loss from all levels.

    Args:
      box_outputs: an OrderDict with keys representing levels and values
        representing box regression targets in
        [batch_size, height, width, num_anchors * 4].
        last channel: (left, right, top, bottom).
      labels: the dictionary that returned from dataloader that includes
        groundturth targets (left, right, top, bottom).
      center_targets: valid_target mask.

    Returns:
      rpn_iou_loss: a scalar tensor representing total box regression loss.
    """
    with tf.name_scope('rpn_loss'):
      # Normalizer.
      levels = sorted(box_outputs.keys())
      normalizer = 0.
      for level in levels:
        # center_targets pos>0, neg=0, ign=-1.
        mask_ = tf.cast(tf.logical_and(
            tf.greater(center_targets[level][..., 0], 0.0),
            tf.greater(tf.reduce_min(labels[level], -1), 0.0)), tf.float32)
        normalizer += tf.reduce_sum(mask_)
      normalizer += 1e-8
      # iou_loss over multi levels.
      iou_losses = []
      for level in levels:
        iou_losses.append(
            self._rpn_iou_loss(
                box_outputs[level], labels[level],
                center_weight=center_targets[level][..., 0],
                normalizer=normalizer))
      # Sum per level losses to total loss.
      return tf.add_n(iou_losses)

  def _rpn_iou_loss(self, box_outputs, box_targets,
                    center_weight=None, normalizer=1.0):
    """Computes box regression loss."""
    # for instances, the regression targets of 512x512 input with 6 anchors on
    # P2-P6 pyramid is about [0.1, 0.1, 0.2, 0.2].
    with tf.name_scope('rpn_iou_loss'):
      mask = tf.logical_and(
          tf.greater(center_weight, 0.0),
          tf.greater(tf.reduce_min(box_targets, -1), 0.0))

      pred_left = box_outputs[..., 0]
      pred_right = box_outputs[..., 1]
      pred_top = box_outputs[..., 2]
      pred_bottom = box_outputs[..., 3]

      gt_left = box_targets[..., 0]
      gt_right = box_targets[..., 1]
      gt_top = box_targets[..., 2]
      gt_bottom = box_targets[..., 3]

      inter_width = (tf.minimum(pred_left, gt_left) +
                     tf.minimum(pred_right, gt_right))
      inter_height = (tf.minimum(pred_top, gt_top) +
                      tf.minimum(pred_bottom, gt_bottom))
      inter_area = inter_width * inter_height
      union_area = ((pred_left + pred_right) * (pred_top + pred_bottom) +
                    (gt_left + gt_right) * (gt_top + gt_bottom) -
                    inter_area)
      iou = inter_area / (union_area + 1e-8)
      mask_ = tf.cast(mask, tf.float32)
      iou = tf.clip_by_value(iou, clip_value_min=1e-8, clip_value_max=1.0)
      neg_log_iou = -tf.math.log(iou)
      iou_loss = tf.reduce_sum(neg_log_iou * mask_)
      iou_loss /= normalizer
      return iou_loss


class FastrcnnClassLoss(object):
  """Fast R-CNN classification loss function."""

  def __init__(self):
    self._categorical_crossentropy = tf_keras.losses.CategoricalCrossentropy(
        reduction=tf_keras.losses.Reduction.SUM, from_logits=True)

  def __call__(self, class_outputs, class_targets):
    """Computes the class loss (Fast-RCNN branch) of Mask-RCNN.

    This function implements the classification loss of the Fast-RCNN.

    The classification loss is softmax on all RoIs.
    Reference: https://github.com/facebookresearch/Detectron/blob/master/detectron/modeling/fast_rcnn_heads.py  # pylint: disable=line-too-long

    Args:
      class_outputs: a float tensor representing the class prediction for each box
        with a shape of [batch_size, num_boxes, num_classes].
      class_targets: a float tensor representing the class label for each box
        with a shape of [batch_size, num_boxes].

    Returns:
      a scalar tensor representing total class loss.
    """
    with tf.name_scope('fast_rcnn_loss'):
      batch_size, num_boxes, num_classes = class_outputs.get_shape().as_list()
      class_targets = tf.cast(class_targets, dtype=tf.int32)
      class_targets_one_hot = tf.one_hot(class_targets, num_classes)
      return self._fast_rcnn_class_loss(class_outputs, class_targets_one_hot,
                                        normalizer=batch_size * num_boxes / 2.0)

  def _fast_rcnn_class_loss(self, class_outputs, class_targets_one_hot,
                            normalizer):
    """Computes classification loss."""
    with tf.name_scope('fast_rcnn_class_loss'):
      class_loss = self._categorical_crossentropy(class_targets_one_hot,
                                                  class_outputs)

      class_loss /= normalizer
      return class_loss


class FastrcnnBoxLoss(object):
  """Fast R-CNN box regression loss function."""

  def __init__(self, params):
    logging.info('FastrcnnBoxLoss huber_loss_delta %s', params.huber_loss_delta)
    # The delta is typically around the mean value of regression target.
    # for instances, the regression targets of 512x512 input with 6 anchors on
    # P2-P6 pyramid is about [0.1, 0.1, 0.2, 0.2].
    self._huber_loss = tf_keras.losses.Huber(
        delta=params.huber_loss_delta, reduction=tf_keras.losses.Reduction.SUM)

  def __call__(self, box_outputs, class_targets, box_targets):
    """Computes the box loss (Fast-RCNN branch) of Mask-RCNN.

    This function implements the box regression loss of the Fast-RCNN. As the
    `box_outputs` produces `num_classes` boxes for each RoI, the reference model
    expands `box_targets` to match the shape of `box_outputs` and selects only
    the target that the RoI has a maximum overlap. (Reference: https://github.com/facebookresearch/Detectron/blob/master/detectron/roi_data/fast_rcnn.py)  # pylint: disable=line-too-long
    Instead, this function selects the `box_outputs` by the `class_targets` so
    that it doesn't expand `box_targets`.

    The box loss is smooth L1-loss on only positive samples of RoIs.
    Reference: https://github.com/facebookresearch/Detectron/blob/master/detectron/modeling/fast_rcnn_heads.py  # pylint: disable=line-too-long

    Args:
      box_outputs: a float tensor representing the box prediction for each box
        with a shape of [batch_size, num_boxes, num_classes * 4].
      class_targets: a float tensor representing the class label for each box
        with a shape of [batch_size, num_boxes].
      box_targets: a float tensor representing the box label for each box
        with a shape of [batch_size, num_boxes, 4].

    Returns:
      box_loss: a scalar tensor representing total box regression loss.
    """
    with tf.name_scope('fast_rcnn_loss'):
      class_targets = tf.cast(class_targets, dtype=tf.int32)

      # Selects the box from `box_outputs` based on `class_targets`, with which
      # the box has the maximum overlap.
      (batch_size, num_rois,
       num_class_specific_boxes) = box_outputs.get_shape().as_list()
      num_classes = num_class_specific_boxes // 4
      box_outputs = tf.reshape(box_outputs,
                               [batch_size, num_rois, num_classes, 4])

      box_indices = tf.reshape(
          class_targets + tf.tile(
              tf.expand_dims(
                  tf.range(batch_size) * num_rois * num_classes, 1),
              [1, num_rois]) + tf.tile(
                  tf.expand_dims(tf.range(num_rois) * num_classes, 0),
                  [batch_size, 1]), [-1])

      box_outputs = tf.matmul(
          tf.one_hot(
              box_indices,
              batch_size * num_rois * num_classes,
              dtype=box_outputs.dtype), tf.reshape(box_outputs, [-1, 4]))
      box_outputs = tf.reshape(box_outputs, [batch_size, -1, 4])

      return self._fast_rcnn_box_loss(box_outputs, box_targets, class_targets)

  def _fast_rcnn_box_loss(self, box_outputs, box_targets, class_targets,
                          normalizer=1.0):
    """Computes box regression loss."""
    with tf.name_scope('fast_rcnn_box_loss'):
      mask = tf.tile(tf.expand_dims(tf.greater(class_targets, 0), axis=2),
                     [1, 1, 4])
      mask = tf.cast(mask, dtype=tf.float32)
      box_targets = tf.expand_dims(box_targets, axis=-1)
      box_outputs = tf.expand_dims(box_outputs, axis=-1)
      box_loss = self._huber_loss(box_targets, box_outputs, sample_weight=mask)
      # The loss is normalized by the number of ones in mask,
      # additianal normalizer provided by the user and using 0.01 here to avoid
      # division by 0.
      box_loss /= normalizer * (tf.reduce_sum(mask) + 0.01)
      return box_loss


class OlnBoxScoreLoss(object):
  """Object Localization Network Box-Iou scoring function."""

  def __init__(self, params):
    self._ignore_threshold = params.ignore_threshold
    self._l1_loss = tf_keras.losses.MeanAbsoluteError(
        reduction=tf_keras.losses.Reduction.SUM)

  def __call__(self, score_outputs, score_targets):
    """Computes the class loss (Fast-RCNN branch) of Mask-RCNN.

    This function implements the classification loss of the Fast-RCNN.

    The classification loss is softmax on all RoIs.
    Reference: https://github.com/facebookresearch/Detectron/blob/master/detectron/modeling/fast_rcnn_heads.py  # pylint: disable=line-too-long

    Args:
      score_outputs: a float tensor representing the class prediction for each box
        with a shape of [batch_size, num_boxes, num_classes].
      score_targets: a float tensor representing the class label for each box
        with a shape of [batch_size, num_boxes].

    Returns:
      a scalar tensor representing total score loss.
    """
    with tf.name_scope('fast_rcnn_loss'):
      score_outputs = tf.squeeze(score_outputs, -1)

      mask = tf.greater(score_targets, self._ignore_threshold)
      num_valid = tf.reduce_sum(tf.cast(mask, tf.float32))
      score_targets = tf.maximum(score_targets, tf.zeros_like(score_targets))
      score_outputs = tf.sigmoid(score_outputs)
      score_targets = tf.expand_dims(score_targets, -1)
      score_outputs = tf.expand_dims(score_outputs, -1)
      mask = tf.cast(mask, dtype=tf.float32)
      score_loss = self._l1_loss(score_targets, score_outputs,
                                 sample_weight=mask)
      score_loss /= (num_valid + 1e-10)
      return score_loss


class MaskrcnnLoss(object):
  """Mask R-CNN instance segmentation mask loss function."""

  def __init__(self):
    self._binary_crossentropy = tf_keras.losses.BinaryCrossentropy(
        reduction=tf_keras.losses.Reduction.SUM, from_logits=True)

  def __call__(self, mask_outputs, mask_targets, select_class_targets):
    """Computes the mask loss of Mask-RCNN.

    This function implements the mask loss of Mask-RCNN. As the `mask_outputs`
    produces `num_classes` masks for each RoI, the reference model expands
    `mask_targets` to match the shape of `mask_outputs` and selects only the
    target that the RoI has a maximum overlap. (Reference: https://github.com/facebookresearch/Detectron/blob/master/detectron/roi_data/mask_rcnn.py)  # pylint: disable=line-too-long
    Instead, this implementation selects the `mask_outputs` by the `class_targets`
    so that it doesn't expand `mask_targets`. Note that the selection logic is
    done in the post-processing of mask_rcnn_fn in mask_rcnn_architecture.py.

    Args:
      mask_outputs: a float tensor representing the prediction for each mask,
        with a shape of
        [batch_size, num_masks, mask_height, mask_width].
      mask_targets: a float tensor representing the binary mask of ground truth
        labels for each mask with a shape of
        [batch_size, num_masks, mask_height, mask_width].
      select_class_targets: a tensor with a shape of [batch_size, num_masks],
        representing the foreground mask targets.

    Returns:
      mask_loss: a float tensor representing total mask loss.
    """
    with tf.name_scope('mask_rcnn_loss'):
      (batch_size, num_masks, mask_height,
       mask_width) = mask_outputs.get_shape().as_list()

      weights = tf.tile(
          tf.reshape(tf.greater(select_class_targets, 0),
                     [batch_size, num_masks, 1, 1]),
          [1, 1, mask_height, mask_width])
      weights = tf.cast(weights, dtype=tf.float32)

      mask_targets = tf.expand_dims(mask_targets, axis=-1)
      mask_outputs = tf.expand_dims(mask_outputs, axis=-1)
      mask_loss = self._binary_crossentropy(mask_targets, mask_outputs,
                                            sample_weight=weights)

      # The loss is normalized by the number of 1's in weights and
      # + 0.01 is used to avoid division by zero.
      return mask_loss / (tf.reduce_sum(weights) + 0.01)


class RetinanetClassLoss(object):
  """RetinaNet class loss."""

  def __init__(self, params, num_classes):
    self._num_classes = num_classes
    self._focal_loss_alpha = params.focal_loss_alpha
    self._focal_loss_gamma = params.focal_loss_gamma

  def __call__(self, cls_outputs, labels, num_positives):
    """Computes total detection loss.

    Computes total detection loss including box and class loss from all levels.

    Args:
      cls_outputs: an OrderDict with keys representing levels and values
        representing logits in [batch_size, height, width,
        num_anchors * num_classes].
      labels: the dictionary that returned from dataloader that includes
        class groundturth targets.
      num_positives: number of positive examples in the minibatch.

    Returns:
      an integar tensor representing total class loss.
    """
    # Sums all positives in a batch for normalization and avoids zero
    # num_positives_sum, which would lead to inf loss during training
    num_positives_sum = tf.reduce_sum(input_tensor=num_positives) + 1.0

    cls_losses = []
    for level in cls_outputs.keys():
      cls_losses.append(self.class_loss(
          cls_outputs[level], labels[level], num_positives_sum))
    # Sums per level losses to total loss.
    return tf.add_n(cls_losses)

  def class_loss(self, cls_outputs, cls_targets, num_positives,
                 ignore_label=-2):
    """Computes RetinaNet classification loss."""
    # Onehot encoding for classification labels.
    cls_targets_one_hot = tf.one_hot(cls_targets, self._num_classes)
    bs, height, width, _, _ = cls_targets_one_hot.get_shape().as_list()
    cls_targets_one_hot = tf.reshape(cls_targets_one_hot,
                                     [bs, height, width, -1])
    loss = focal_loss(tf.cast(cls_outputs, dtype=tf.float32),
                      tf.cast(cls_targets_one_hot, dtype=tf.float32),
                      self._focal_loss_alpha,
                      self._focal_loss_gamma,
                      num_positives)

    ignore_loss = tf.where(
        tf.equal(cls_targets, ignore_label),
        tf.zeros_like(cls_targets, dtype=tf.float32),
        tf.ones_like(cls_targets, dtype=tf.float32),
    )
    ignore_loss = tf.expand_dims(ignore_loss, -1)
    ignore_loss = tf.tile(ignore_loss, [1, 1, 1, 1, self._num_classes])
    ignore_loss = tf.reshape(ignore_loss, tf.shape(input=loss))
    return tf.reduce_sum(input_tensor=ignore_loss * loss)


class RetinanetBoxLoss(object):
  """RetinaNet box loss."""

  def __init__(self, params):
    self._huber_loss = tf_keras.losses.Huber(
        delta=params.huber_loss_delta, reduction=tf_keras.losses.Reduction.SUM)

  def __call__(self, box_outputs, labels, num_positives):
    """Computes box detection loss.

    Computes total detection loss including box and class loss from all levels.

    Args:
      box_outputs: an OrderDict with keys representing levels and values
        representing box regression targets in [batch_size, height, width,
        num_anchors * 4].
      labels: the dictionary that returned from dataloader that includes
        box groundturth targets.
      num_positives: number of positive examples in the minibatch.

    Returns:
      an integer tensor representing total box regression loss.
    """
    # Sums all positives in a batch for normalization and avoids zero
    # num_positives_sum, which would lead to inf loss during training
    num_positives_sum = tf.reduce_sum(input_tensor=num_positives) + 1.0

    box_losses = []
    for level in box_outputs.keys():
      box_targets_l = labels[level]
      box_losses.append(
          self.box_loss(box_outputs[level], box_targets_l, num_positives_sum))
    # Sums per level losses to total loss.
    return tf.add_n(box_losses)

  def box_loss(self, box_outputs, box_targets, num_positives):
    """Computes RetinaNet box regression loss."""
    # The delta is typically around the mean value of regression target.
    # for instances, the regression targets of 512x512 input with 6 anchors on
    # P3-P7 pyramid is about [0.1, 0.1, 0.2, 0.2].
    normalizer = num_positives * 4.0
    mask = tf.cast(tf.not_equal(box_targets, 0.0), dtype=tf.float32)
    box_targets = tf.expand_dims(box_targets, axis=-1)
    box_outputs = tf.expand_dims(box_outputs, axis=-1)
    box_loss = self._huber_loss(box_targets, box_outputs, sample_weight=mask)
    box_loss /= normalizer
    return box_loss


class ShapemaskMseLoss(object):
  """ShapeMask mask Mean Squared Error loss function wrapper."""

  def __call__(self, probs, labels, valid_mask):
    """Compute instance segmentation loss.

    Args:
      probs: A Tensor of shape [batch_size * num_points, height, width,
        num_classes]. The logits are not necessarily between 0 and 1.
      labels: A float32/float16 Tensor of shape [batch_size, num_instances,
          mask_size, mask_size], where mask_size =
          mask_crop_size * gt_upsample_scale for fine mask, or mask_crop_size
          for coarse masks and shape priors.
      valid_mask: a binary mask indicating valid training masks.

    Returns:
      loss: an float tensor representing total mask classification loss.
    """
    with tf.name_scope('shapemask_prior_loss'):
      batch_size, num_instances = valid_mask.get_shape().as_list()[:2]
      diff = (tf.cast(labels, dtype=tf.float32) -
              tf.cast(probs, dtype=tf.float32))
      diff *= tf.cast(
          tf.reshape(valid_mask, [batch_size, num_instances, 1, 1]),
          tf.float32)
      # Adding 0.001 in the denominator to avoid division by zero.
      loss = tf.nn.l2_loss(diff) / (tf.reduce_sum(labels) + 0.001)
    return loss


class ShapemaskLoss(object):
  """ShapeMask mask loss function wrapper."""

  def __init__(self):
    self._binary_crossentropy = tf_keras.losses.BinaryCrossentropy(
        reduction=tf_keras.losses.Reduction.SUM, from_logits=True)

  def __call__(self, logits, labels, valid_mask):
    """ShapeMask mask cross entropy loss function wrapper.

    Args:
      logits: A Tensor of shape [batch_size * num_instances, height, width,
        num_classes]. The logits are not necessarily between 0 and 1.
      labels: A float16/float32 Tensor of shape [batch_size, num_instances,
        mask_size, mask_size], where mask_size =
        mask_crop_size * gt_upsample_scale for fine mask, or mask_crop_size
        for coarse masks and shape priors.
      valid_mask: a binary mask of shape [batch_size, num_instances]
        indicating valid training masks.
    Returns:
      loss: an float tensor representing total mask classification loss.
    """
    with tf.name_scope('shapemask_loss'):
      batch_size, num_instances = valid_mask.get_shape().as_list()[:2]
      labels = tf.cast(labels, tf.float32)
      logits = tf.cast(logits, tf.float32)
      loss = self._binary_crossentropy(labels, logits)
      loss *= tf.cast(tf.reshape(
          valid_mask, [batch_size, num_instances, 1, 1]), loss.dtype)
      # Adding 0.001 in the denominator to avoid division by zero.
      loss = tf.reduce_sum(loss) / (tf.reduce_sum(labels) + 0.001)
    return loss