File size: 16,784 Bytes
5672777
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
# Copyright 2023 The TensorFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

"""Model defination for the Object Localization Network (OLN) Model."""

from __future__ import absolute_import
from __future__ import division
from __future__ import print_function

import tensorflow as tf, tf_keras

from official.legacy.detection.dataloader import anchor
from official.legacy.detection.dataloader import mode_keys
from official.legacy.detection.modeling import losses
from official.legacy.detection.modeling.architecture import factory
from official.legacy.detection.modeling.maskrcnn_model import MaskrcnnModel
from official.legacy.detection.ops import postprocess_ops
from official.legacy.detection.ops import roi_ops
from official.legacy.detection.ops import spatial_transform_ops
from official.legacy.detection.ops import target_ops
from official.legacy.detection.utils import box_utils


class OlnMaskModel(MaskrcnnModel):
  """OLN-Mask model function."""

  def __init__(self, params):
    super(OlnMaskModel, self).__init__(params)

    self._params = params

    # Different heads and layers.
    self._include_rpn_class = params.architecture.include_rpn_class
    self._include_mask = params.architecture.include_mask
    self._include_frcnn_class = params.architecture.include_frcnn_class
    self._include_frcnn_box = params.architecture.include_frcnn_box
    self._include_centerness = params.rpn_head.has_centerness
    self._include_box_score = (params.frcnn_head.has_scoring and
                               params.architecture.include_frcnn_box)
    self._include_mask_score = (params.mrcnn_head.has_scoring and
                                params.architecture.include_mask)

    # Architecture generators.
    self._backbone_fn = factory.backbone_generator(params)
    self._fpn_fn = factory.multilevel_features_generator(params)
    self._rpn_head_fn = factory.rpn_head_generator(params)
    if self._include_centerness:
      self._rpn_head_fn = factory.oln_rpn_head_generator(params)
    else:
      self._rpn_head_fn = factory.rpn_head_generator(params)
    self._generate_rois_fn = roi_ops.OlnROIGenerator(params.roi_proposal)
    self._sample_rois_fn = target_ops.ROIScoreSampler(params.roi_sampling)
    self._sample_masks_fn = target_ops.MaskSampler(
        params.architecture.mask_target_size,
        params.mask_sampling.num_mask_samples_per_image)

    if self._include_box_score:
      self._frcnn_head_fn = factory.oln_box_score_head_generator(params)
    else:
      self._frcnn_head_fn = factory.fast_rcnn_head_generator(params)

    if self._include_mask:
      if self._include_mask_score:
        self._mrcnn_head_fn = factory.oln_mask_score_head_generator(params)
      else:
        self._mrcnn_head_fn = factory.mask_rcnn_head_generator(params)

    # Loss function.
    self._rpn_score_loss_fn = losses.RpnScoreLoss(params.rpn_score_loss)
    self._rpn_box_loss_fn = losses.RpnBoxLoss(params.rpn_box_loss)
    if self._include_centerness:
      self._rpn_iou_loss_fn = losses.OlnRpnIoULoss()
      self._rpn_center_loss_fn = losses.OlnRpnCenterLoss()
    self._frcnn_class_loss_fn = losses.FastrcnnClassLoss()
    self._frcnn_box_loss_fn = losses.FastrcnnBoxLoss(params.frcnn_box_loss)
    if self._include_box_score:
      self._frcnn_box_score_loss_fn = losses.OlnBoxScoreLoss(
          params.frcnn_box_score_loss)
    if self._include_mask:
      self._mask_loss_fn = losses.MaskrcnnLoss()

    self._generate_detections_fn = postprocess_ops.OlnDetectionGenerator(
        params.postprocess)

    self._transpose_input = params.train.transpose_input
    assert not self._transpose_input, 'Transpose input is not supportted.'

  def build_outputs(self, inputs, mode):
    is_training = mode == mode_keys.TRAIN
    model_outputs = {}

    image = inputs['image']
    _, image_height, image_width, _ = image.get_shape().as_list()
    backbone_features = self._backbone_fn(image, is_training)
    fpn_features = self._fpn_fn(backbone_features, is_training)

    # rpn_centerness.
    if self._include_centerness:
      rpn_score_outputs, rpn_box_outputs, rpn_center_outputs = (
          self._rpn_head_fn(fpn_features, is_training))
      model_outputs.update({
          'rpn_center_outputs':
              tf.nest.map_structure(lambda x: tf.cast(x, tf.float32),
                                    rpn_center_outputs),
      })
      object_scores = rpn_center_outputs
    else:
      rpn_score_outputs, rpn_box_outputs = self._rpn_head_fn(
          fpn_features, is_training)
      object_scores = None
    model_outputs.update({
        'rpn_score_outputs':
            tf.nest.map_structure(lambda x: tf.cast(x, tf.float32),
                                  rpn_score_outputs),
        'rpn_box_outputs':
            tf.nest.map_structure(lambda x: tf.cast(x, tf.float32),
                                  rpn_box_outputs),
    })
    input_anchor = anchor.Anchor(self._params.architecture.min_level,
                                 self._params.architecture.max_level,
                                 self._params.anchor.num_scales,
                                 self._params.anchor.aspect_ratios,
                                 self._params.anchor.anchor_size,
                                 (image_height, image_width))
    rpn_rois, rpn_roi_scores = self._generate_rois_fn(
        rpn_box_outputs,
        rpn_score_outputs,
        input_anchor.multilevel_boxes,
        inputs['image_info'][:, 1, :],
        is_training,
        is_box_lrtb=self._include_centerness,
        object_scores=object_scores,
        )
    if (not self._include_frcnn_class and
        not self._include_frcnn_box and
        not self._include_mask):
      # if not is_training:
      # For direct RPN detection,
      # use dummy box_outputs = (dy,dx,dh,dw = 0,0,0,0)
      box_outputs = tf.zeros_like(rpn_rois)
      box_outputs = tf.concat([box_outputs, box_outputs], -1)
      boxes, scores, classes, valid_detections = self._generate_detections_fn(
          box_outputs, rpn_roi_scores, rpn_rois,
          inputs['image_info'][:, 1:2, :],
          is_single_fg_score=True,  # if no_background, no softmax is applied.
          keep_nms=True)
      model_outputs.update({
          'num_detections': valid_detections,
          'detection_boxes': boxes,
          'detection_classes': classes,
          'detection_scores': scores,
      })
      return model_outputs

    # ---- OLN-Proposal finishes here. ----

    if is_training:
      rpn_rois = tf.stop_gradient(rpn_rois)
      rpn_roi_scores = tf.stop_gradient(rpn_roi_scores)

      # Sample proposals.
      (rpn_rois, rpn_roi_scores, matched_gt_boxes, matched_gt_classes,
       matched_gt_indices) = (
           self._sample_rois_fn(rpn_rois, rpn_roi_scores, inputs['gt_boxes'],
                                inputs['gt_classes']))
      # Create bounding box training targets.
      box_targets = box_utils.encode_boxes(
          matched_gt_boxes, rpn_rois, weights=[10.0, 10.0, 5.0, 5.0])
      # If the target is background, the box target is set to all 0s.
      box_targets = tf.where(
          tf.tile(
              tf.expand_dims(tf.equal(matched_gt_classes, 0), axis=-1),
              [1, 1, 4]), tf.zeros_like(box_targets), box_targets)
      model_outputs.update({
          'class_targets': matched_gt_classes,
          'box_targets': box_targets,
      })
      # Create Box-IoU targets. {
      box_ious = box_utils.bbox_overlap(
          rpn_rois, inputs['gt_boxes'])
      matched_box_ious = tf.reduce_max(box_ious, 2)
      model_outputs.update({
          'box_iou_targets': matched_box_ious,})  # }

    roi_features = spatial_transform_ops.multilevel_crop_and_resize(
        fpn_features, rpn_rois, output_size=7)

    if not self._include_box_score:
      class_outputs, box_outputs = self._frcnn_head_fn(
          roi_features, is_training)
    else:
      class_outputs, box_outputs, score_outputs = self._frcnn_head_fn(
          roi_features, is_training)
      model_outputs.update({
          'box_score_outputs':
              tf.nest.map_structure(lambda x: tf.cast(x, tf.float32),
                                    score_outputs),})
    model_outputs.update({
        'class_outputs':
            tf.nest.map_structure(lambda x: tf.cast(x, tf.float32),
                                  class_outputs),
        'box_outputs':
            tf.nest.map_structure(lambda x: tf.cast(x, tf.float32),
                                  box_outputs),
    })

    # Add this output to train to make the checkpoint loadable in predict mode.
    # If we skip it in train mode, the heads will be out-of-order and checkpoint
    # loading will fail.
    if not self._include_frcnn_box:
      box_outputs = tf.zeros_like(box_outputs)  # dummy zeros.

    if self._include_box_score:
      score_outputs = tf.cast(tf.squeeze(score_outputs, -1),
                              rpn_roi_scores.dtype)

      # box-score = (rpn-centerness * box-iou)^(1/2)
      # TR: rpn_roi_scores: b,1000, score_outputs: b,512
      # TS: rpn_roi_scores: b,1000, score_outputs: b,1000
      box_scores = tf.pow(
          rpn_roi_scores * tf.sigmoid(score_outputs), 1/2.)

    if not self._include_frcnn_class:
      boxes, scores, classes, valid_detections = self._generate_detections_fn(
          box_outputs,
          box_scores,
          rpn_rois,
          inputs['image_info'][:, 1:2, :],
          is_single_fg_score=True,
          keep_nms=True,)
    else:
      boxes, scores, classes, valid_detections = self._generate_detections_fn(
          box_outputs, class_outputs, rpn_rois,
          inputs['image_info'][:, 1:2, :],
          keep_nms=True,)
    model_outputs.update({
        'num_detections': valid_detections,
        'detection_boxes': boxes,
        'detection_classes': classes,
        'detection_scores': scores,
    })

    # ---- OLN-Box finishes here. ----

    if not self._include_mask:
      return model_outputs

    if is_training:
      rpn_rois, classes, mask_targets = self._sample_masks_fn(
          rpn_rois, matched_gt_boxes, matched_gt_classes, matched_gt_indices,
          inputs['gt_masks'])
      mask_targets = tf.stop_gradient(mask_targets)

      classes = tf.cast(classes, dtype=tf.int32)

      model_outputs.update({
          'mask_targets': mask_targets,
          'sampled_class_targets': classes,
      })
    else:
      rpn_rois = boxes
      classes = tf.cast(classes, dtype=tf.int32)

    mask_roi_features = spatial_transform_ops.multilevel_crop_and_resize(
        fpn_features, rpn_rois, output_size=14)

    mask_outputs = self._mrcnn_head_fn(mask_roi_features, classes, is_training)

    if is_training:
      model_outputs.update({
          'mask_outputs':
              tf.nest.map_structure(lambda x: tf.cast(x, tf.float32),
                                    mask_outputs),
      })
    else:
      model_outputs.update({'detection_masks': tf.nn.sigmoid(mask_outputs)})

    return model_outputs

  def build_loss_fn(self):
    if self._keras_model is None:
      raise ValueError('build_loss_fn() must be called after build_model().')

    filter_fn = self.make_filter_trainable_variables_fn()
    trainable_variables = filter_fn(self._keras_model.trainable_variables)

    def _total_loss_fn(labels, outputs):
      if self._include_rpn_class:
        rpn_score_loss = self._rpn_score_loss_fn(outputs['rpn_score_outputs'],
                                                 labels['rpn_score_targets'])
      else:
        rpn_score_loss = 0.0
      if self._include_centerness:
        rpn_center_loss = self._rpn_center_loss_fn(
            outputs['rpn_center_outputs'], labels['rpn_center_targets'])
        rpn_box_loss = self._rpn_iou_loss_fn(
            outputs['rpn_box_outputs'], labels['rpn_box_targets'],
            labels['rpn_center_targets'])
      else:
        rpn_center_loss = 0.0
        rpn_box_loss = self._rpn_box_loss_fn(
            outputs['rpn_box_outputs'], labels['rpn_box_targets'])

      if self._include_frcnn_class:
        frcnn_class_loss = self._frcnn_class_loss_fn(
            outputs['class_outputs'], outputs['class_targets'])
      else:
        frcnn_class_loss = 0.0
      if self._include_frcnn_box:
        frcnn_box_loss = self._frcnn_box_loss_fn(
            outputs['box_outputs'], outputs['class_targets'],
            outputs['box_targets'])
      else:
        frcnn_box_loss = 0.0
      if self._include_box_score:
        box_score_loss = self._frcnn_box_score_loss_fn(
            outputs['box_score_outputs'], outputs['box_iou_targets'])
      else:
        box_score_loss = 0.0

      if self._include_mask:
        mask_loss = self._mask_loss_fn(outputs['mask_outputs'],
                                       outputs['mask_targets'],
                                       outputs['sampled_class_targets'])
      else:
        mask_loss = 0.0

      model_loss = (
          rpn_score_loss + rpn_box_loss + rpn_center_loss +
          frcnn_class_loss + frcnn_box_loss + box_score_loss +
          mask_loss)

      l2_regularization_loss = self.weight_decay_loss(trainable_variables)
      total_loss = model_loss + l2_regularization_loss
      return {
          'total_loss': total_loss,
          'loss': total_loss,
          'fast_rcnn_class_loss': frcnn_class_loss,
          'fast_rcnn_box_loss': frcnn_box_loss,
          'fast_rcnn_box_score_loss': box_score_loss,
          'mask_loss': mask_loss,
          'model_loss': model_loss,
          'l2_regularization_loss': l2_regularization_loss,
          'rpn_score_loss': rpn_score_loss,
          'rpn_box_loss': rpn_box_loss,
          'rpn_center_loss': rpn_center_loss,
      }

    return _total_loss_fn

  def build_input_layers(self, params, mode):
    is_training = mode == mode_keys.TRAIN
    input_shape = (
        params.olnmask_parser.output_size +
        [params.olnmask_parser.num_channels])
    if is_training:
      batch_size = params.train.batch_size
      input_layer = {
          'image':
              tf_keras.layers.Input(
                  shape=input_shape,
                  batch_size=batch_size,
                  name='image',
                  dtype=tf.bfloat16 if self._use_bfloat16 else tf.float32),
          'image_info':
              tf_keras.layers.Input(
                  shape=[4, 2],
                  batch_size=batch_size,
                  name='image_info',
              ),
          'gt_boxes':
              tf_keras.layers.Input(
                  shape=[params.olnmask_parser.max_num_instances, 4],
                  batch_size=batch_size,
                  name='gt_boxes'),
          'gt_classes':
              tf_keras.layers.Input(
                  shape=[params.olnmask_parser.max_num_instances],
                  batch_size=batch_size,
                  name='gt_classes',
                  dtype=tf.int64),
      }
      if self._include_mask:
        input_layer['gt_masks'] = tf_keras.layers.Input(
            shape=[
                params.olnmask_parser.max_num_instances,
                params.olnmask_parser.mask_crop_size,
                params.olnmask_parser.mask_crop_size
            ],
            batch_size=batch_size,
            name='gt_masks')
    else:
      batch_size = params.eval.batch_size
      input_layer = {
          'image':
              tf_keras.layers.Input(
                  shape=input_shape,
                  batch_size=batch_size,
                  name='image',
                  dtype=tf.bfloat16 if self._use_bfloat16 else tf.float32),
          'image_info':
              tf_keras.layers.Input(
                  shape=[4, 2],
                  batch_size=batch_size,
                  name='image_info',
              ),
      }
    return input_layer

  def build_model(self, params, mode):
    if self._keras_model is None:
      input_layers = self.build_input_layers(self._params, mode)
      outputs = self.model_outputs(input_layers, mode)

      model = tf_keras.models.Model(
          inputs=input_layers, outputs=outputs, name='olnmask')
      assert model is not None, 'Fail to build tf_keras.Model.'
      model.optimizer = self.build_optimizer()
      self._keras_model = model

    return self._keras_model