File size: 21,952 Bytes
5672777
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
# Copyright 2023 The TensorFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

"""Post-processing model outputs to generate detection."""

from __future__ import absolute_import
from __future__ import division
from __future__ import print_function

import functools

import tensorflow as tf, tf_keras

from official.legacy.detection.ops import nms
from official.legacy.detection.utils import box_utils


def generate_detections_factory(params):
  """Factory to select function to generate detection."""
  if params.use_batched_nms:
    func = functools.partial(
        _generate_detections_batched,
        max_total_size=params.max_total_size,
        nms_iou_threshold=params.nms_iou_threshold,
        score_threshold=params.score_threshold)
  else:
    func = functools.partial(
        _generate_detections,
        max_total_size=params.max_total_size,
        nms_iou_threshold=params.nms_iou_threshold,
        score_threshold=params.score_threshold,
        pre_nms_num_boxes=params.pre_nms_num_boxes)
  return func


def _select_top_k_scores(scores_in, pre_nms_num_detections):
  """Select top_k scores and indices for each class.

  Args:
    scores_in: a Tensor with shape [batch_size, N, num_classes], which stacks
      class logit outputs on all feature levels. The N is the number of total
      anchors on all levels. The num_classes is the number of classes predicted
      by the model.
    pre_nms_num_detections: Number of candidates before NMS.

  Returns:
    scores and indices: Tensors with shape [batch_size, pre_nms_num_detections,
      num_classes].
  """
  batch_size, num_anchors, num_class = scores_in.get_shape().as_list()
  scores_trans = tf.transpose(scores_in, perm=[0, 2, 1])
  scores_trans = tf.reshape(scores_trans, [-1, num_anchors])

  top_k_scores, top_k_indices = tf.nn.top_k(
      scores_trans, k=pre_nms_num_detections, sorted=True)

  top_k_scores = tf.reshape(top_k_scores,
                            [batch_size, num_class, pre_nms_num_detections])
  top_k_indices = tf.reshape(top_k_indices,
                             [batch_size, num_class, pre_nms_num_detections])

  return tf.transpose(top_k_scores,
                      [0, 2, 1]), tf.transpose(top_k_indices, [0, 2, 1])


def _generate_detections(boxes,
                         scores,
                         max_total_size=100,
                         nms_iou_threshold=0.3,
                         score_threshold=0.05,
                         pre_nms_num_boxes=5000):
  """Generate the final detections given the model outputs.

  This uses classes unrolling with while loop based NMS, could be parralled
  at batch dimension.

  Args:
    boxes: a tensor with shape [batch_size, N, num_classes, 4] or [batch_size,
      N, 1, 4], which box predictions on all feature levels. The N is the number
      of total anchors on all levels.
    scores: a tensor with shape [batch_size, N, num_classes], which stacks class
      probability on all feature levels. The N is the number of total anchors on
      all levels. The num_classes is the number of classes predicted by the
      model. Note that the class_outputs here is the raw score.
    max_total_size: a scalar representing maximum number of boxes retained over
      all classes.
    nms_iou_threshold: a float representing the threshold for deciding whether
      boxes overlap too much with respect to IOU.
    score_threshold: a float representing the threshold for deciding when to
      remove boxes based on score.
    pre_nms_num_boxes: an int number of top candidate detections per class
      before NMS.

  Returns:
    nms_boxes: `float` Tensor of shape [batch_size, max_total_size, 4]
      representing top detected boxes in [y1, x1, y2, x2].
    nms_scores: `float` Tensor of shape [batch_size, max_total_size]
      representing sorted confidence scores for detected boxes. The values are
      between [0, 1].
    nms_classes: `int` Tensor of shape [batch_size, max_total_size] representing
      classes for detected boxes.
    valid_detections: `int` Tensor of shape [batch_size] only the top
      `valid_detections` boxes are valid detections.
  """
  with tf.name_scope('generate_detections'):
    nmsed_boxes = []
    nmsed_classes = []
    nmsed_scores = []
    valid_detections = []
    batch_size, _, num_classes_for_box, _ = boxes.get_shape().as_list()
    _, total_anchors, num_classes = scores.get_shape().as_list()
    # Selects top pre_nms_num scores and indices before NMS.
    scores, indices = _select_top_k_scores(
        scores, min(total_anchors, pre_nms_num_boxes))
    for i in range(num_classes):
      boxes_i = boxes[:, :, min(num_classes_for_box - 1, i), :]
      scores_i = scores[:, :, i]
      # Obtains pre_nms_num_boxes before running NMS.
      boxes_i = tf.gather(boxes_i, indices[:, :, i], batch_dims=1, axis=1)

      # Filter out scores.
      boxes_i, scores_i = box_utils.filter_boxes_by_scores(
          boxes_i, scores_i, min_score_threshold=score_threshold)

      (nmsed_scores_i, nmsed_boxes_i) = nms.sorted_non_max_suppression_padded(
          tf.cast(scores_i, tf.float32),
          tf.cast(boxes_i, tf.float32),
          max_total_size,
          iou_threshold=nms_iou_threshold)
      nmsed_classes_i = tf.fill([batch_size, max_total_size], i)
      nmsed_boxes.append(nmsed_boxes_i)
      nmsed_scores.append(nmsed_scores_i)
      nmsed_classes.append(nmsed_classes_i)
  nmsed_boxes = tf.concat(nmsed_boxes, axis=1)
  nmsed_scores = tf.concat(nmsed_scores, axis=1)
  nmsed_classes = tf.concat(nmsed_classes, axis=1)
  nmsed_scores, indices = tf.nn.top_k(
      nmsed_scores, k=max_total_size, sorted=True)
  nmsed_boxes = tf.gather(nmsed_boxes, indices, batch_dims=1, axis=1)
  nmsed_classes = tf.gather(nmsed_classes, indices, batch_dims=1)
  valid_detections = tf.reduce_sum(
      input_tensor=tf.cast(tf.greater(nmsed_scores, -1), tf.int32), axis=1)
  return nmsed_boxes, nmsed_scores, nmsed_classes, valid_detections


def _generate_detections_per_image(boxes,
                                   scores,
                                   max_total_size=100,
                                   nms_iou_threshold=0.3,
                                   score_threshold=0.05,
                                   pre_nms_num_boxes=5000):
  """Generate the final detections per image given the model outputs.

  Args:
    boxes: a tensor with shape [N, num_classes, 4] or [N, 1, 4], which box
      predictions on all feature levels. The N is the number of total anchors on
      all levels.
    scores: a tensor with shape [N, num_classes], which stacks class probability
      on all feature levels. The N is the number of total anchors on all levels.
      The num_classes is the number of classes predicted by the model. Note that
      the class_outputs here is the raw score.
    max_total_size: a scalar representing maximum number of boxes retained over
      all classes.
    nms_iou_threshold: a float representing the threshold for deciding whether
      boxes overlap too much with respect to IOU.
    score_threshold: a float representing the threshold for deciding when to
      remove boxes based on score.
    pre_nms_num_boxes: an int number of top candidate detections per class
      before NMS.

  Returns:
    nms_boxes: `float` Tensor of shape [max_total_size, 4] representing top
      detected boxes in [y1, x1, y2, x2].
    nms_scores: `float` Tensor of shape [max_total_size] representing sorted
      confidence scores for detected boxes. The values are between [0, 1].
    nms_classes: `int` Tensor of shape [max_total_size] representing classes for
      detected boxes.
    valid_detections: `int` Tensor of shape [1] only the top `valid_detections`
      boxes are valid detections.
  """
  nmsed_boxes = []
  nmsed_scores = []
  nmsed_classes = []
  num_classes_for_box = boxes.get_shape().as_list()[1]
  num_classes = scores.get_shape().as_list()[1]
  for i in range(num_classes):
    boxes_i = boxes[:, min(num_classes_for_box - 1, i)]
    scores_i = scores[:, i]

    # Obtains pre_nms_num_boxes before running NMS.
    scores_i, indices = tf.nn.top_k(
        scores_i, k=tf.minimum(tf.shape(input=scores_i)[-1], pre_nms_num_boxes))
    boxes_i = tf.gather(boxes_i, indices)

    (nmsed_indices_i, nmsed_num_valid_i) = tf.image.non_max_suppression_padded(
        tf.cast(boxes_i, tf.float32),
        tf.cast(scores_i, tf.float32),
        max_total_size,
        iou_threshold=nms_iou_threshold,
        score_threshold=score_threshold,
        pad_to_max_output_size=True,
        name='nms_detections_' + str(i))
    nmsed_boxes_i = tf.gather(boxes_i, nmsed_indices_i)
    nmsed_scores_i = tf.gather(scores_i, nmsed_indices_i)
    # Sets scores of invalid boxes to -1.
    nmsed_scores_i = tf.where(
        tf.less(tf.range(max_total_size), [nmsed_num_valid_i]), nmsed_scores_i,
        -tf.ones_like(nmsed_scores_i))
    nmsed_classes_i = tf.fill([max_total_size], i)
    nmsed_boxes.append(nmsed_boxes_i)
    nmsed_scores.append(nmsed_scores_i)
    nmsed_classes.append(nmsed_classes_i)

  # Concats results from all classes and sort them.
  nmsed_boxes = tf.concat(nmsed_boxes, axis=0)
  nmsed_scores = tf.concat(nmsed_scores, axis=0)
  nmsed_classes = tf.concat(nmsed_classes, axis=0)
  nmsed_scores, indices = tf.nn.top_k(
      nmsed_scores, k=max_total_size, sorted=True)
  nmsed_boxes = tf.gather(nmsed_boxes, indices)
  nmsed_classes = tf.gather(nmsed_classes, indices)
  valid_detections = tf.reduce_sum(
      input_tensor=tf.cast(tf.greater(nmsed_scores, -1), tf.int32))
  return nmsed_boxes, nmsed_scores, nmsed_classes, valid_detections


def _generate_detections_batched(boxes, scores, max_total_size,
                                 nms_iou_threshold, score_threshold):
  """Generates detected boxes with scores and classes for one-stage detector.

  The function takes output of multi-level ConvNets and anchor boxes and
  generates detected boxes. Note that this used batched nms, which is not
  supported on TPU currently.

  Args:
    boxes: a tensor with shape [batch_size, N, num_classes, 4] or [batch_size,
      N, 1, 4], which box predictions on all feature levels. The N is the number
      of total anchors on all levels.
    scores: a tensor with shape [batch_size, N, num_classes], which stacks class
      probability on all feature levels. The N is the number of total anchors on
      all levels. The num_classes is the number of classes predicted by the
      model. Note that the class_outputs here is the raw score.
    max_total_size: a scalar representing maximum number of boxes retained over
      all classes.
    nms_iou_threshold: a float representing the threshold for deciding whether
      boxes overlap too much with respect to IOU.
    score_threshold: a float representing the threshold for deciding when to
      remove boxes based on score.

  Returns:
    nms_boxes: `float` Tensor of shape [batch_size, max_total_size, 4]
      representing top detected boxes in [y1, x1, y2, x2].
    nms_scores: `float` Tensor of shape [batch_size, max_total_size]
      representing sorted confidence scores for detected boxes. The values are
      between [0, 1].
    nms_classes: `int` Tensor of shape [batch_size, max_total_size] representing
      classes for detected boxes.
    valid_detections: `int` Tensor of shape [batch_size] only the top
      `valid_detections` boxes are valid detections.
  """
  with tf.name_scope('generate_detections'):
    # TODO(tsungyi): Removes normalization/denomalization once the
    # tf.image.combined_non_max_suppression is coordinate system agnostic.
    # Normalizes maximum box cooridinates to 1.
    normalizer = tf.reduce_max(boxes)
    boxes /= normalizer
    (nmsed_boxes, nmsed_scores, nmsed_classes,
     valid_detections) = tf.image.combined_non_max_suppression(
         boxes,
         scores,
         max_output_size_per_class=max_total_size,
         max_total_size=max_total_size,
         iou_threshold=nms_iou_threshold,
         score_threshold=score_threshold,
         pad_per_class=False,
     )
    # De-normalizes box cooridinates.
    nmsed_boxes *= normalizer
  nmsed_classes = tf.cast(nmsed_classes, tf.int32)
  return nmsed_boxes, nmsed_scores, nmsed_classes, valid_detections


class MultilevelDetectionGenerator(tf_keras.layers.Layer):
  """Generates detected boxes with scores and classes for one-stage detector."""

  def __init__(self, min_level, max_level, params):
    self._min_level = min_level
    self._max_level = max_level
    self._generate_detections = generate_detections_factory(params)
    super(MultilevelDetectionGenerator, self).__init__(autocast=False)

  def call(self, box_outputs, class_outputs, anchor_boxes, image_shape):
    # Collects outputs from all levels into a list.
    boxes = []
    scores = []
    for i in range(self._min_level, self._max_level + 1):
      box_outputs_i_shape = tf.shape(box_outputs[i])
      batch_size = box_outputs_i_shape[0]
      num_anchors_per_locations = box_outputs_i_shape[-1] // 4
      num_classes = tf.shape(class_outputs[i])[-1] // num_anchors_per_locations

      # Applies score transformation and remove the implicit background class.
      scores_i = tf.sigmoid(
          tf.reshape(class_outputs[i], [batch_size, -1, num_classes]))
      scores_i = tf.slice(scores_i, [0, 0, 1], [-1, -1, -1])

      # Box decoding.
      # The anchor boxes are shared for all data in a batch.
      # One stage detector only supports class agnostic box regression.
      anchor_boxes_i = tf.reshape(anchor_boxes[i], [batch_size, -1, 4])
      box_outputs_i = tf.reshape(box_outputs[i], [batch_size, -1, 4])
      boxes_i = box_utils.decode_boxes(box_outputs_i, anchor_boxes_i)

      # Box clipping.
      boxes_i = box_utils.clip_boxes(boxes_i, image_shape)

      boxes.append(boxes_i)
      scores.append(scores_i)
    boxes = tf.concat(boxes, axis=1)
    scores = tf.concat(scores, axis=1)

    nmsed_boxes, nmsed_scores, nmsed_classes, valid_detections = (
        self._generate_detections(tf.expand_dims(boxes, axis=2), scores))

    # Adds 1 to offset the background class which has index 0.
    nmsed_classes += 1
    return nmsed_boxes, nmsed_scores, nmsed_classes, valid_detections


class GenericDetectionGenerator(tf_keras.layers.Layer):
  """Generates the final detected boxes with scores and classes."""

  def __init__(self, params):
    super(GenericDetectionGenerator, self).__init__(autocast=False)
    self._generate_detections = generate_detections_factory(params)

  def call(self, box_outputs, class_outputs, anchor_boxes, image_shape):
    """Generate final detections.

    Args:
      box_outputs: a tensor of shape of [batch_size, K, num_classes * 4]
        representing the class-specific box coordinates relative to anchors.
      class_outputs: a tensor of shape of [batch_size, K, num_classes]
        representing the class logits before applying score activiation.
      anchor_boxes: a tensor of shape of [batch_size, K, 4] representing the
        corresponding anchor boxes w.r.t `box_outputs`.
      image_shape: a tensor of shape of [batch_size, 2] storing the image height
        and width w.r.t. the scaled image, i.e. the same image space as
        `box_outputs` and `anchor_boxes`.

    Returns:
      nms_boxes: `float` Tensor of shape [batch_size, max_total_size, 4]
        representing top detected boxes in [y1, x1, y2, x2].
      nms_scores: `float` Tensor of shape [batch_size, max_total_size]
        representing sorted confidence scores for detected boxes. The values are
        between [0, 1].
      nms_classes: `int` Tensor of shape [batch_size, max_total_size]
        representing classes for detected boxes.
      valid_detections: `int` Tensor of shape [batch_size] only the top
        `valid_detections` boxes are valid detections.
    """
    class_outputs = tf.nn.softmax(class_outputs, axis=-1)

    # Removes the background class.
    class_outputs_shape = tf.shape(class_outputs)
    batch_size = class_outputs_shape[0]
    num_locations = class_outputs_shape[1]
    num_classes = class_outputs_shape[-1]
    num_detections = num_locations * (num_classes - 1)

    class_outputs = tf.slice(class_outputs, [0, 0, 1], [-1, -1, -1])
    box_outputs = tf.reshape(
        box_outputs,
        tf.stack([batch_size, num_locations, num_classes, 4], axis=-1))
    box_outputs = tf.slice(box_outputs, [0, 0, 1, 0], [-1, -1, -1, -1])
    anchor_boxes = tf.tile(
        tf.expand_dims(anchor_boxes, axis=2), [1, 1, num_classes - 1, 1])
    box_outputs = tf.reshape(box_outputs,
                             tf.stack([batch_size, num_detections, 4], axis=-1))
    anchor_boxes = tf.reshape(
        anchor_boxes, tf.stack([batch_size, num_detections, 4], axis=-1))

    # Box decoding.
    decoded_boxes = box_utils.decode_boxes(
        box_outputs, anchor_boxes, weights=[10.0, 10.0, 5.0, 5.0])

    # Box clipping
    decoded_boxes = box_utils.clip_boxes(decoded_boxes, image_shape)

    decoded_boxes = tf.reshape(
        decoded_boxes,
        tf.stack([batch_size, num_locations, num_classes - 1, 4], axis=-1))

    nmsed_boxes, nmsed_scores, nmsed_classes, valid_detections = (
        self._generate_detections(decoded_boxes, class_outputs))

    # Adds 1 to offset the background class which has index 0.
    nmsed_classes += 1

    return nmsed_boxes, nmsed_scores, nmsed_classes, valid_detections


class OlnDetectionGenerator(GenericDetectionGenerator):
  """Generates the final detected boxes with scores and classes."""

  def __call__(self, box_outputs, class_outputs, anchor_boxes, image_shape,
               is_single_fg_score=False, keep_nms=True):
    """Generate final detections for Object Localization Network (OLN).

    Args:
      box_outputs: a tensor of shape of [batch_size, K, num_classes * 4]
        representing the class-specific box coordinates relative to anchors.
      class_outputs: a tensor of shape of [batch_size, K, num_classes]
        representing the class logits before applying score activiation.
      anchor_boxes: a tensor of shape of [batch_size, K, 4] representing the
        corresponding anchor boxes w.r.t `box_outputs`.
      image_shape: a tensor of shape of [batch_size, 2] storing the image height
        and width w.r.t. the scaled image, i.e. the same image space as
        `box_outputs` and `anchor_boxes`.
      is_single_fg_score: a Bool indicator of whether class_outputs includes the
        background scores concatenated or not. By default, class_outputs is a
        concatenation of both scores for the foreground and background. That is,
        scores_without_bg=False.
      keep_nms: a Bool indicator of whether to perform NMS or not.

    Returns:
      nms_boxes: `float` Tensor of shape [batch_size, max_total_size, 4]
        representing top detected boxes in [y1, x1, y2, x2].
      nms_scores: `float` Tensor of shape [batch_size, max_total_size]
        representing sorted confidence scores for detected boxes. The values are
        between [0, 1].
      nms_classes: `int` Tensor of shape [batch_size, max_total_size]
        representing classes for detected boxes.
      valid_detections: `int` Tensor of shape [batch_size] only the top
        `valid_detections` boxes are valid detections.
    """
    if is_single_fg_score:
      # Concatenates dummy background scores.
      dummy_bg_scores = tf.zeros_like(class_outputs)
      class_outputs = tf.stack([dummy_bg_scores, class_outputs], -1)
    else:
      class_outputs = tf.nn.softmax(class_outputs, axis=-1)

    # Removes the background class.
    class_outputs_shape = tf.shape(class_outputs)
    batch_size = class_outputs_shape[0]
    num_locations = class_outputs_shape[1]
    num_classes = class_outputs_shape[-1]
    num_detections = num_locations * (num_classes - 1)

    class_outputs = tf.slice(class_outputs, [0, 0, 1], [-1, -1, -1])
    box_outputs = tf.reshape(
        box_outputs,
        tf.stack([batch_size, num_locations, num_classes, 4], axis=-1))
    box_outputs = tf.slice(box_outputs, [0, 0, 1, 0], [-1, -1, -1, -1])
    anchor_boxes = tf.tile(
        tf.expand_dims(anchor_boxes, axis=2), [1, 1, num_classes - 1, 1])
    box_outputs = tf.reshape(box_outputs,
                             tf.stack([batch_size, num_detections, 4], axis=-1))
    anchor_boxes = tf.reshape(
        anchor_boxes, tf.stack([batch_size, num_detections, 4], axis=-1))

    # Box decoding. For RPN outputs, box_outputs are all zeros.
    decoded_boxes = box_utils.decode_boxes(
        box_outputs, anchor_boxes, weights=[10.0, 10.0, 5.0, 5.0])

    # Box clipping
    decoded_boxes = box_utils.clip_boxes(decoded_boxes, image_shape)

    decoded_boxes = tf.reshape(
        decoded_boxes,
        tf.stack([batch_size, num_locations, num_classes - 1, 4], axis=-1))

    if keep_nms:
      nmsed_boxes, nmsed_scores, nmsed_classes, valid_detections = (
          self._generate_detections(decoded_boxes, class_outputs))
      # Adds 1 to offset the background class which has index 0.
      nmsed_classes += 1
    else:
      nmsed_boxes = decoded_boxes[:, :, 0, :]
      nmsed_scores = class_outputs[:, :, 0]
      nmsed_classes = tf.cast(tf.ones_like(nmsed_scores), tf.int32)
      valid_detections = tf.cast(
          tf.reduce_sum(tf.ones_like(nmsed_scores), axis=-1), tf.int32)

    return nmsed_boxes, nmsed_scores, nmsed_classes, valid_detections