Spaces:
Sleeping
Sleeping
File size: 21,952 Bytes
5672777 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 |
# Copyright 2023 The TensorFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Post-processing model outputs to generate detection."""
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import functools
import tensorflow as tf, tf_keras
from official.legacy.detection.ops import nms
from official.legacy.detection.utils import box_utils
def generate_detections_factory(params):
"""Factory to select function to generate detection."""
if params.use_batched_nms:
func = functools.partial(
_generate_detections_batched,
max_total_size=params.max_total_size,
nms_iou_threshold=params.nms_iou_threshold,
score_threshold=params.score_threshold)
else:
func = functools.partial(
_generate_detections,
max_total_size=params.max_total_size,
nms_iou_threshold=params.nms_iou_threshold,
score_threshold=params.score_threshold,
pre_nms_num_boxes=params.pre_nms_num_boxes)
return func
def _select_top_k_scores(scores_in, pre_nms_num_detections):
"""Select top_k scores and indices for each class.
Args:
scores_in: a Tensor with shape [batch_size, N, num_classes], which stacks
class logit outputs on all feature levels. The N is the number of total
anchors on all levels. The num_classes is the number of classes predicted
by the model.
pre_nms_num_detections: Number of candidates before NMS.
Returns:
scores and indices: Tensors with shape [batch_size, pre_nms_num_detections,
num_classes].
"""
batch_size, num_anchors, num_class = scores_in.get_shape().as_list()
scores_trans = tf.transpose(scores_in, perm=[0, 2, 1])
scores_trans = tf.reshape(scores_trans, [-1, num_anchors])
top_k_scores, top_k_indices = tf.nn.top_k(
scores_trans, k=pre_nms_num_detections, sorted=True)
top_k_scores = tf.reshape(top_k_scores,
[batch_size, num_class, pre_nms_num_detections])
top_k_indices = tf.reshape(top_k_indices,
[batch_size, num_class, pre_nms_num_detections])
return tf.transpose(top_k_scores,
[0, 2, 1]), tf.transpose(top_k_indices, [0, 2, 1])
def _generate_detections(boxes,
scores,
max_total_size=100,
nms_iou_threshold=0.3,
score_threshold=0.05,
pre_nms_num_boxes=5000):
"""Generate the final detections given the model outputs.
This uses classes unrolling with while loop based NMS, could be parralled
at batch dimension.
Args:
boxes: a tensor with shape [batch_size, N, num_classes, 4] or [batch_size,
N, 1, 4], which box predictions on all feature levels. The N is the number
of total anchors on all levels.
scores: a tensor with shape [batch_size, N, num_classes], which stacks class
probability on all feature levels. The N is the number of total anchors on
all levels. The num_classes is the number of classes predicted by the
model. Note that the class_outputs here is the raw score.
max_total_size: a scalar representing maximum number of boxes retained over
all classes.
nms_iou_threshold: a float representing the threshold for deciding whether
boxes overlap too much with respect to IOU.
score_threshold: a float representing the threshold for deciding when to
remove boxes based on score.
pre_nms_num_boxes: an int number of top candidate detections per class
before NMS.
Returns:
nms_boxes: `float` Tensor of shape [batch_size, max_total_size, 4]
representing top detected boxes in [y1, x1, y2, x2].
nms_scores: `float` Tensor of shape [batch_size, max_total_size]
representing sorted confidence scores for detected boxes. The values are
between [0, 1].
nms_classes: `int` Tensor of shape [batch_size, max_total_size] representing
classes for detected boxes.
valid_detections: `int` Tensor of shape [batch_size] only the top
`valid_detections` boxes are valid detections.
"""
with tf.name_scope('generate_detections'):
nmsed_boxes = []
nmsed_classes = []
nmsed_scores = []
valid_detections = []
batch_size, _, num_classes_for_box, _ = boxes.get_shape().as_list()
_, total_anchors, num_classes = scores.get_shape().as_list()
# Selects top pre_nms_num scores and indices before NMS.
scores, indices = _select_top_k_scores(
scores, min(total_anchors, pre_nms_num_boxes))
for i in range(num_classes):
boxes_i = boxes[:, :, min(num_classes_for_box - 1, i), :]
scores_i = scores[:, :, i]
# Obtains pre_nms_num_boxes before running NMS.
boxes_i = tf.gather(boxes_i, indices[:, :, i], batch_dims=1, axis=1)
# Filter out scores.
boxes_i, scores_i = box_utils.filter_boxes_by_scores(
boxes_i, scores_i, min_score_threshold=score_threshold)
(nmsed_scores_i, nmsed_boxes_i) = nms.sorted_non_max_suppression_padded(
tf.cast(scores_i, tf.float32),
tf.cast(boxes_i, tf.float32),
max_total_size,
iou_threshold=nms_iou_threshold)
nmsed_classes_i = tf.fill([batch_size, max_total_size], i)
nmsed_boxes.append(nmsed_boxes_i)
nmsed_scores.append(nmsed_scores_i)
nmsed_classes.append(nmsed_classes_i)
nmsed_boxes = tf.concat(nmsed_boxes, axis=1)
nmsed_scores = tf.concat(nmsed_scores, axis=1)
nmsed_classes = tf.concat(nmsed_classes, axis=1)
nmsed_scores, indices = tf.nn.top_k(
nmsed_scores, k=max_total_size, sorted=True)
nmsed_boxes = tf.gather(nmsed_boxes, indices, batch_dims=1, axis=1)
nmsed_classes = tf.gather(nmsed_classes, indices, batch_dims=1)
valid_detections = tf.reduce_sum(
input_tensor=tf.cast(tf.greater(nmsed_scores, -1), tf.int32), axis=1)
return nmsed_boxes, nmsed_scores, nmsed_classes, valid_detections
def _generate_detections_per_image(boxes,
scores,
max_total_size=100,
nms_iou_threshold=0.3,
score_threshold=0.05,
pre_nms_num_boxes=5000):
"""Generate the final detections per image given the model outputs.
Args:
boxes: a tensor with shape [N, num_classes, 4] or [N, 1, 4], which box
predictions on all feature levels. The N is the number of total anchors on
all levels.
scores: a tensor with shape [N, num_classes], which stacks class probability
on all feature levels. The N is the number of total anchors on all levels.
The num_classes is the number of classes predicted by the model. Note that
the class_outputs here is the raw score.
max_total_size: a scalar representing maximum number of boxes retained over
all classes.
nms_iou_threshold: a float representing the threshold for deciding whether
boxes overlap too much with respect to IOU.
score_threshold: a float representing the threshold for deciding when to
remove boxes based on score.
pre_nms_num_boxes: an int number of top candidate detections per class
before NMS.
Returns:
nms_boxes: `float` Tensor of shape [max_total_size, 4] representing top
detected boxes in [y1, x1, y2, x2].
nms_scores: `float` Tensor of shape [max_total_size] representing sorted
confidence scores for detected boxes. The values are between [0, 1].
nms_classes: `int` Tensor of shape [max_total_size] representing classes for
detected boxes.
valid_detections: `int` Tensor of shape [1] only the top `valid_detections`
boxes are valid detections.
"""
nmsed_boxes = []
nmsed_scores = []
nmsed_classes = []
num_classes_for_box = boxes.get_shape().as_list()[1]
num_classes = scores.get_shape().as_list()[1]
for i in range(num_classes):
boxes_i = boxes[:, min(num_classes_for_box - 1, i)]
scores_i = scores[:, i]
# Obtains pre_nms_num_boxes before running NMS.
scores_i, indices = tf.nn.top_k(
scores_i, k=tf.minimum(tf.shape(input=scores_i)[-1], pre_nms_num_boxes))
boxes_i = tf.gather(boxes_i, indices)
(nmsed_indices_i, nmsed_num_valid_i) = tf.image.non_max_suppression_padded(
tf.cast(boxes_i, tf.float32),
tf.cast(scores_i, tf.float32),
max_total_size,
iou_threshold=nms_iou_threshold,
score_threshold=score_threshold,
pad_to_max_output_size=True,
name='nms_detections_' + str(i))
nmsed_boxes_i = tf.gather(boxes_i, nmsed_indices_i)
nmsed_scores_i = tf.gather(scores_i, nmsed_indices_i)
# Sets scores of invalid boxes to -1.
nmsed_scores_i = tf.where(
tf.less(tf.range(max_total_size), [nmsed_num_valid_i]), nmsed_scores_i,
-tf.ones_like(nmsed_scores_i))
nmsed_classes_i = tf.fill([max_total_size], i)
nmsed_boxes.append(nmsed_boxes_i)
nmsed_scores.append(nmsed_scores_i)
nmsed_classes.append(nmsed_classes_i)
# Concats results from all classes and sort them.
nmsed_boxes = tf.concat(nmsed_boxes, axis=0)
nmsed_scores = tf.concat(nmsed_scores, axis=0)
nmsed_classes = tf.concat(nmsed_classes, axis=0)
nmsed_scores, indices = tf.nn.top_k(
nmsed_scores, k=max_total_size, sorted=True)
nmsed_boxes = tf.gather(nmsed_boxes, indices)
nmsed_classes = tf.gather(nmsed_classes, indices)
valid_detections = tf.reduce_sum(
input_tensor=tf.cast(tf.greater(nmsed_scores, -1), tf.int32))
return nmsed_boxes, nmsed_scores, nmsed_classes, valid_detections
def _generate_detections_batched(boxes, scores, max_total_size,
nms_iou_threshold, score_threshold):
"""Generates detected boxes with scores and classes for one-stage detector.
The function takes output of multi-level ConvNets and anchor boxes and
generates detected boxes. Note that this used batched nms, which is not
supported on TPU currently.
Args:
boxes: a tensor with shape [batch_size, N, num_classes, 4] or [batch_size,
N, 1, 4], which box predictions on all feature levels. The N is the number
of total anchors on all levels.
scores: a tensor with shape [batch_size, N, num_classes], which stacks class
probability on all feature levels. The N is the number of total anchors on
all levels. The num_classes is the number of classes predicted by the
model. Note that the class_outputs here is the raw score.
max_total_size: a scalar representing maximum number of boxes retained over
all classes.
nms_iou_threshold: a float representing the threshold for deciding whether
boxes overlap too much with respect to IOU.
score_threshold: a float representing the threshold for deciding when to
remove boxes based on score.
Returns:
nms_boxes: `float` Tensor of shape [batch_size, max_total_size, 4]
representing top detected boxes in [y1, x1, y2, x2].
nms_scores: `float` Tensor of shape [batch_size, max_total_size]
representing sorted confidence scores for detected boxes. The values are
between [0, 1].
nms_classes: `int` Tensor of shape [batch_size, max_total_size] representing
classes for detected boxes.
valid_detections: `int` Tensor of shape [batch_size] only the top
`valid_detections` boxes are valid detections.
"""
with tf.name_scope('generate_detections'):
# TODO(tsungyi): Removes normalization/denomalization once the
# tf.image.combined_non_max_suppression is coordinate system agnostic.
# Normalizes maximum box cooridinates to 1.
normalizer = tf.reduce_max(boxes)
boxes /= normalizer
(nmsed_boxes, nmsed_scores, nmsed_classes,
valid_detections) = tf.image.combined_non_max_suppression(
boxes,
scores,
max_output_size_per_class=max_total_size,
max_total_size=max_total_size,
iou_threshold=nms_iou_threshold,
score_threshold=score_threshold,
pad_per_class=False,
)
# De-normalizes box cooridinates.
nmsed_boxes *= normalizer
nmsed_classes = tf.cast(nmsed_classes, tf.int32)
return nmsed_boxes, nmsed_scores, nmsed_classes, valid_detections
class MultilevelDetectionGenerator(tf_keras.layers.Layer):
"""Generates detected boxes with scores and classes for one-stage detector."""
def __init__(self, min_level, max_level, params):
self._min_level = min_level
self._max_level = max_level
self._generate_detections = generate_detections_factory(params)
super(MultilevelDetectionGenerator, self).__init__(autocast=False)
def call(self, box_outputs, class_outputs, anchor_boxes, image_shape):
# Collects outputs from all levels into a list.
boxes = []
scores = []
for i in range(self._min_level, self._max_level + 1):
box_outputs_i_shape = tf.shape(box_outputs[i])
batch_size = box_outputs_i_shape[0]
num_anchors_per_locations = box_outputs_i_shape[-1] // 4
num_classes = tf.shape(class_outputs[i])[-1] // num_anchors_per_locations
# Applies score transformation and remove the implicit background class.
scores_i = tf.sigmoid(
tf.reshape(class_outputs[i], [batch_size, -1, num_classes]))
scores_i = tf.slice(scores_i, [0, 0, 1], [-1, -1, -1])
# Box decoding.
# The anchor boxes are shared for all data in a batch.
# One stage detector only supports class agnostic box regression.
anchor_boxes_i = tf.reshape(anchor_boxes[i], [batch_size, -1, 4])
box_outputs_i = tf.reshape(box_outputs[i], [batch_size, -1, 4])
boxes_i = box_utils.decode_boxes(box_outputs_i, anchor_boxes_i)
# Box clipping.
boxes_i = box_utils.clip_boxes(boxes_i, image_shape)
boxes.append(boxes_i)
scores.append(scores_i)
boxes = tf.concat(boxes, axis=1)
scores = tf.concat(scores, axis=1)
nmsed_boxes, nmsed_scores, nmsed_classes, valid_detections = (
self._generate_detections(tf.expand_dims(boxes, axis=2), scores))
# Adds 1 to offset the background class which has index 0.
nmsed_classes += 1
return nmsed_boxes, nmsed_scores, nmsed_classes, valid_detections
class GenericDetectionGenerator(tf_keras.layers.Layer):
"""Generates the final detected boxes with scores and classes."""
def __init__(self, params):
super(GenericDetectionGenerator, self).__init__(autocast=False)
self._generate_detections = generate_detections_factory(params)
def call(self, box_outputs, class_outputs, anchor_boxes, image_shape):
"""Generate final detections.
Args:
box_outputs: a tensor of shape of [batch_size, K, num_classes * 4]
representing the class-specific box coordinates relative to anchors.
class_outputs: a tensor of shape of [batch_size, K, num_classes]
representing the class logits before applying score activiation.
anchor_boxes: a tensor of shape of [batch_size, K, 4] representing the
corresponding anchor boxes w.r.t `box_outputs`.
image_shape: a tensor of shape of [batch_size, 2] storing the image height
and width w.r.t. the scaled image, i.e. the same image space as
`box_outputs` and `anchor_boxes`.
Returns:
nms_boxes: `float` Tensor of shape [batch_size, max_total_size, 4]
representing top detected boxes in [y1, x1, y2, x2].
nms_scores: `float` Tensor of shape [batch_size, max_total_size]
representing sorted confidence scores for detected boxes. The values are
between [0, 1].
nms_classes: `int` Tensor of shape [batch_size, max_total_size]
representing classes for detected boxes.
valid_detections: `int` Tensor of shape [batch_size] only the top
`valid_detections` boxes are valid detections.
"""
class_outputs = tf.nn.softmax(class_outputs, axis=-1)
# Removes the background class.
class_outputs_shape = tf.shape(class_outputs)
batch_size = class_outputs_shape[0]
num_locations = class_outputs_shape[1]
num_classes = class_outputs_shape[-1]
num_detections = num_locations * (num_classes - 1)
class_outputs = tf.slice(class_outputs, [0, 0, 1], [-1, -1, -1])
box_outputs = tf.reshape(
box_outputs,
tf.stack([batch_size, num_locations, num_classes, 4], axis=-1))
box_outputs = tf.slice(box_outputs, [0, 0, 1, 0], [-1, -1, -1, -1])
anchor_boxes = tf.tile(
tf.expand_dims(anchor_boxes, axis=2), [1, 1, num_classes - 1, 1])
box_outputs = tf.reshape(box_outputs,
tf.stack([batch_size, num_detections, 4], axis=-1))
anchor_boxes = tf.reshape(
anchor_boxes, tf.stack([batch_size, num_detections, 4], axis=-1))
# Box decoding.
decoded_boxes = box_utils.decode_boxes(
box_outputs, anchor_boxes, weights=[10.0, 10.0, 5.0, 5.0])
# Box clipping
decoded_boxes = box_utils.clip_boxes(decoded_boxes, image_shape)
decoded_boxes = tf.reshape(
decoded_boxes,
tf.stack([batch_size, num_locations, num_classes - 1, 4], axis=-1))
nmsed_boxes, nmsed_scores, nmsed_classes, valid_detections = (
self._generate_detections(decoded_boxes, class_outputs))
# Adds 1 to offset the background class which has index 0.
nmsed_classes += 1
return nmsed_boxes, nmsed_scores, nmsed_classes, valid_detections
class OlnDetectionGenerator(GenericDetectionGenerator):
"""Generates the final detected boxes with scores and classes."""
def __call__(self, box_outputs, class_outputs, anchor_boxes, image_shape,
is_single_fg_score=False, keep_nms=True):
"""Generate final detections for Object Localization Network (OLN).
Args:
box_outputs: a tensor of shape of [batch_size, K, num_classes * 4]
representing the class-specific box coordinates relative to anchors.
class_outputs: a tensor of shape of [batch_size, K, num_classes]
representing the class logits before applying score activiation.
anchor_boxes: a tensor of shape of [batch_size, K, 4] representing the
corresponding anchor boxes w.r.t `box_outputs`.
image_shape: a tensor of shape of [batch_size, 2] storing the image height
and width w.r.t. the scaled image, i.e. the same image space as
`box_outputs` and `anchor_boxes`.
is_single_fg_score: a Bool indicator of whether class_outputs includes the
background scores concatenated or not. By default, class_outputs is a
concatenation of both scores for the foreground and background. That is,
scores_without_bg=False.
keep_nms: a Bool indicator of whether to perform NMS or not.
Returns:
nms_boxes: `float` Tensor of shape [batch_size, max_total_size, 4]
representing top detected boxes in [y1, x1, y2, x2].
nms_scores: `float` Tensor of shape [batch_size, max_total_size]
representing sorted confidence scores for detected boxes. The values are
between [0, 1].
nms_classes: `int` Tensor of shape [batch_size, max_total_size]
representing classes for detected boxes.
valid_detections: `int` Tensor of shape [batch_size] only the top
`valid_detections` boxes are valid detections.
"""
if is_single_fg_score:
# Concatenates dummy background scores.
dummy_bg_scores = tf.zeros_like(class_outputs)
class_outputs = tf.stack([dummy_bg_scores, class_outputs], -1)
else:
class_outputs = tf.nn.softmax(class_outputs, axis=-1)
# Removes the background class.
class_outputs_shape = tf.shape(class_outputs)
batch_size = class_outputs_shape[0]
num_locations = class_outputs_shape[1]
num_classes = class_outputs_shape[-1]
num_detections = num_locations * (num_classes - 1)
class_outputs = tf.slice(class_outputs, [0, 0, 1], [-1, -1, -1])
box_outputs = tf.reshape(
box_outputs,
tf.stack([batch_size, num_locations, num_classes, 4], axis=-1))
box_outputs = tf.slice(box_outputs, [0, 0, 1, 0], [-1, -1, -1, -1])
anchor_boxes = tf.tile(
tf.expand_dims(anchor_boxes, axis=2), [1, 1, num_classes - 1, 1])
box_outputs = tf.reshape(box_outputs,
tf.stack([batch_size, num_detections, 4], axis=-1))
anchor_boxes = tf.reshape(
anchor_boxes, tf.stack([batch_size, num_detections, 4], axis=-1))
# Box decoding. For RPN outputs, box_outputs are all zeros.
decoded_boxes = box_utils.decode_boxes(
box_outputs, anchor_boxes, weights=[10.0, 10.0, 5.0, 5.0])
# Box clipping
decoded_boxes = box_utils.clip_boxes(decoded_boxes, image_shape)
decoded_boxes = tf.reshape(
decoded_boxes,
tf.stack([batch_size, num_locations, num_classes - 1, 4], axis=-1))
if keep_nms:
nmsed_boxes, nmsed_scores, nmsed_classes, valid_detections = (
self._generate_detections(decoded_boxes, class_outputs))
# Adds 1 to offset the background class which has index 0.
nmsed_classes += 1
else:
nmsed_boxes = decoded_boxes[:, :, 0, :]
nmsed_scores = class_outputs[:, :, 0]
nmsed_classes = tf.cast(tf.ones_like(nmsed_scores), tf.int32)
valid_detections = tf.cast(
tf.reduce_sum(tf.ones_like(nmsed_scores), axis=-1), tf.int32)
return nmsed_boxes, nmsed_scores, nmsed_classes, valid_detections
|