File size: 26,008 Bytes
5672777
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
# Copyright 2023 The TensorFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

"""Functions to performa spatial transformation for Tensor."""

from __future__ import absolute_import
from __future__ import division
from __future__ import print_function

import tensorflow as tf, tf_keras

_EPSILON = 1e-8


def nearest_upsampling(data, scale):
  """Nearest neighbor upsampling implementation.

  Args:
    data: A tensor with a shape of [batch, height_in, width_in, channels].
    scale: An integer multiple to scale resolution of input data.

  Returns:
    data_up: A tensor with a shape of
      [batch, height_in*scale, width_in*scale, channels]. Same dtype as input
      data.
  """
  with tf.name_scope('nearest_upsampling'):
    bs, _, _, c = data.get_shape().as_list()
    shape = tf.shape(input=data)
    h = shape[1]
    w = shape[2]
    bs = -1 if bs is None else bs
    # Uses reshape to quickly upsample the input.  The nearest pixel is selected
    # implicitly via broadcasting.
    data = tf.reshape(data, [bs, h, 1, w, 1, c]) * tf.ones(
        [1, 1, scale, 1, scale, 1], dtype=data.dtype)
    return tf.reshape(data, [bs, h * scale, w * scale, c])


def feature_bilinear_interpolation(features, kernel_y, kernel_x):
  """Feature bilinear interpolation.

  The RoIAlign feature f can be computed by bilinear interpolation
  of four neighboring feature points f0, f1, f2, and f3.

  f(y, x) = [hy, ly] * [[f00, f01], * [hx, lx]^T
                        [f10, f11]]
  f(y, x) = (hy*hx)f00 + (hy*lx)f01 + (ly*hx)f10 + (lx*ly)f11
  f(y, x) = w00*f00 + w01*f01 + w10*f10 + w11*f11
  kernel_y = [hy, ly]
  kernel_x = [hx, lx]

  Args:
    features: The features are in shape of [batch_size, num_boxes, output_size *
      2, output_size * 2, num_filters].
    kernel_y: Tensor of size [batch_size, boxes, output_size, 2, 1].
    kernel_x: Tensor of size [batch_size, boxes, output_size, 2, 1].

  Returns:
    A 5-D tensor representing feature crop of shape
    [batch_size, num_boxes, output_size, output_size, num_filters].

  """
  (batch_size, num_boxes, output_size, _,
   num_filters) = features.get_shape().as_list()
  output_size = output_size // 2
  kernel_y = tf.reshape(kernel_y, [batch_size, num_boxes, output_size * 2, 1])
  kernel_x = tf.reshape(kernel_x, [batch_size, num_boxes, 1, output_size * 2])
  # Use implicit broadcast to generate the interpolation kernel. The
  # multiplier `4` is for avg pooling.
  interpolation_kernel = kernel_y * kernel_x * 4

  # Interpolate the gathered features with computed interpolation kernels.
  features *= tf.cast(
      tf.expand_dims(interpolation_kernel, axis=-1), dtype=features.dtype)
  features = tf.reshape(
      features,
      [batch_size * num_boxes, output_size * 2, output_size * 2, num_filters])
  features = tf.nn.avg_pool(features, [1, 2, 2, 1], [1, 2, 2, 1], 'VALID')
  features = tf.reshape(
      features, [batch_size, num_boxes, output_size, output_size, num_filters])
  return features


def compute_grid_positions(boxes, boundaries, output_size, sample_offset):
  """Compute the grid position w.r.t.

  the corresponding feature map.

  Args:
    boxes: a 3-D tensor of shape [batch_size, num_boxes, 4] encoding the
      information of each box w.r.t. the corresponding feature map.
      boxes[:, :, 0:2] are the grid position in (y, x) (float) of the top-left
      corner of each box. boxes[:, :, 2:4] are the box sizes in (h, w) (float)
        in terms of the number of pixels of the corresponding feature map size.
    boundaries: a 3-D tensor of shape [batch_size, num_boxes, 2] representing
      the boundary (in (y, x)) of the corresponding feature map for each box.
      Any resampled grid points that go beyond the bounary will be clipped.
    output_size: a scalar indicating the output crop size.
    sample_offset: a float number in [0, 1] indicates the subpixel sample offset
      from grid point.

  Returns:
    kernel_y: Tensor of size [batch_size, boxes, output_size, 2, 1].
    kernel_x: Tensor of size [batch_size, boxes, output_size, 2, 1].
    box_grid_y0y1: Tensor of size [batch_size, boxes, output_size, 2]
    box_grid_x0x1: Tensor of size [batch_size, boxes, output_size, 2]
  """
  batch_size, num_boxes, _ = boxes.get_shape().as_list()
  box_grid_x = []
  box_grid_y = []
  for i in range(output_size):
    box_grid_x.append(boxes[:, :, 1] +
                      (i + sample_offset) * boxes[:, :, 3] / output_size)
    box_grid_y.append(boxes[:, :, 0] +
                      (i + sample_offset) * boxes[:, :, 2] / output_size)
  box_grid_x = tf.stack(box_grid_x, axis=2)
  box_grid_y = tf.stack(box_grid_y, axis=2)

  box_grid_y0 = tf.floor(box_grid_y)
  box_grid_x0 = tf.floor(box_grid_x)
  box_grid_x0 = tf.maximum(0., box_grid_x0)
  box_grid_y0 = tf.maximum(0., box_grid_y0)

  box_grid_x0 = tf.minimum(box_grid_x0, tf.expand_dims(boundaries[:, :, 1], -1))
  box_grid_x1 = tf.minimum(box_grid_x0 + 1,
                           tf.expand_dims(boundaries[:, :, 1], -1))
  box_grid_y0 = tf.minimum(box_grid_y0, tf.expand_dims(boundaries[:, :, 0], -1))
  box_grid_y1 = tf.minimum(box_grid_y0 + 1,
                           tf.expand_dims(boundaries[:, :, 0], -1))

  box_gridx0x1 = tf.stack([box_grid_x0, box_grid_x1], axis=-1)
  box_gridy0y1 = tf.stack([box_grid_y0, box_grid_y1], axis=-1)

  # The RoIAlign feature f can be computed by bilinear interpolation of four
  # neighboring feature points f0, f1, f2, and f3.
  # f(y, x) = [hy, ly] * [[f00, f01], * [hx, lx]^T
  #                       [f10, f11]]
  # f(y, x) = (hy*hx)f00 + (hy*lx)f01 + (ly*hx)f10 + (lx*ly)f11
  # f(y, x) = w00*f00 + w01*f01 + w10*f10 + w11*f11
  ly = box_grid_y - box_grid_y0
  lx = box_grid_x - box_grid_x0
  hy = 1.0 - ly
  hx = 1.0 - lx
  kernel_y = tf.reshape(
      tf.stack([hy, ly], axis=3), [batch_size, num_boxes, output_size, 2, 1])
  kernel_x = tf.reshape(
      tf.stack([hx, lx], axis=3), [batch_size, num_boxes, output_size, 2, 1])
  return kernel_y, kernel_x, box_gridy0y1, box_gridx0x1


def get_grid_one_hot(box_gridy0y1, box_gridx0x1, feature_height, feature_width):
  """Get grid_one_hot from indices and feature_size."""
  (batch_size, num_boxes, output_size, _) = box_gridx0x1.get_shape().as_list()
  y_indices = tf.cast(
      tf.reshape(box_gridy0y1, [batch_size, num_boxes, output_size, 2]),
      dtype=tf.int32)
  x_indices = tf.cast(
      tf.reshape(box_gridx0x1, [batch_size, num_boxes, output_size, 2]),
      dtype=tf.int32)

  # shape is [batch_size, num_boxes, output_size, 2, height]
  grid_y_one_hot = tf.one_hot(tf.cast(y_indices, tf.int32), feature_height)
  # shape is [batch_size, num_boxes, output_size, 2, width]
  grid_x_one_hot = tf.one_hot(tf.cast(x_indices, tf.int32), feature_width)

  return grid_y_one_hot, grid_x_one_hot


def selective_crop_and_resize(features,
                              boxes,
                              box_levels,
                              boundaries,
                              output_size=7,
                              sample_offset=0.5,
                              use_einsum_gather=False):
  """Crop and resize boxes on a set of feature maps.

  Given multiple features maps indexed by different levels, and a set of boxes
  where each box is mapped to a certain level, it selectively crops and resizes
  boxes from the corresponding feature maps to generate the box features.

  We follow the ROIAlign technique (see https://arxiv.org/pdf/1703.06870.pdf,
  figure 3 for reference). Specifically, for each feature map, we select an
  (output_size, output_size) set of pixels corresponding to the box location,
  and then use bilinear interpolation to select the feature value for each
  pixel.

  For performance, we perform the gather and interpolation on all layers as a
  single operation. In this op the multi-level features are first stacked and
  gathered into [2*output_size, 2*output_size] feature points. Then bilinear
  interpolation is performed on the gathered feature points to generate
  [output_size, output_size] RoIAlign feature map.

  Here is the step-by-step algorithm:
    1. The multi-level features are gathered into a
       [batch_size, num_boxes, output_size*2, output_size*2, num_filters]
       Tensor. The Tensor contains four neighboring feature points for each
       vertice in the output grid.
    2. Compute the interpolation kernel of shape
       [batch_size, num_boxes, output_size*2, output_size*2]. The last 2 axis
       can be seen as stacking 2x2 interpolation kernels for all vertices in the
       output grid.
    3. Element-wise multiply the gathered features and interpolation kernel.
       Then apply 2x2 average pooling to reduce spatial dimension to
       output_size.

  Args:
    features: a 5-D tensor of shape [batch_size, num_levels, max_height,
      max_width, num_filters] where cropping and resizing are based.
    boxes: a 3-D tensor of shape [batch_size, num_boxes, 4] encoding the
      information of each box w.r.t. the corresponding feature map.
      boxes[:, :, 0:2] are the grid position in (y, x) (float) of the top-left
      corner of each box. boxes[:, :, 2:4] are the box sizes in (h, w) (float)
        in terms of the number of pixels of the corresponding feature map size.
    box_levels: a 3-D tensor of shape [batch_size, num_boxes, 1] representing
      the 0-based corresponding feature level index of each box.
    boundaries: a 3-D tensor of shape [batch_size, num_boxes, 2] representing
      the boundary (in (y, x)) of the corresponding feature map for each box.
      Any resampled grid points that go beyond the bounary will be clipped.
    output_size: a scalar indicating the output crop size.
    sample_offset: a float number in [0, 1] indicates the subpixel sample offset
      from grid point.
    use_einsum_gather: use einsum to replace gather or not. Replacing einsum
      with gather can improve performance when feature size is not large, einsum
      is friendly with model partition as well. Gather's performance is better
      when feature size is very large and there are multiple box levels.

  Returns:
    features_per_box: a 5-D tensor of shape
      [batch_size, num_boxes, output_size, output_size, num_filters]
      representing the cropped features.
  """
  (batch_size, num_levels, max_feature_height, max_feature_width,
   num_filters) = features.get_shape().as_list()
  _, num_boxes, _ = boxes.get_shape().as_list()

  kernel_y, kernel_x, box_gridy0y1, box_gridx0x1 = compute_grid_positions(
      boxes, boundaries, output_size, sample_offset)
  x_indices = tf.cast(
      tf.reshape(box_gridx0x1, [batch_size, num_boxes, output_size * 2]),
      dtype=tf.int32)
  y_indices = tf.cast(
      tf.reshape(box_gridy0y1, [batch_size, num_boxes, output_size * 2]),
      dtype=tf.int32)

  if use_einsum_gather:
    # Blinear interpolation is done during the last two gathers:
    #        f(y, x) = [hy, ly] * [[f00, f01], * [hx, lx]^T
    #                              [f10, f11]]
    #        [[f00, f01],
    #         [f10, f11]] = tf.einsum(tf.einsum(features, y_one_hot), x_one_hot)
    #       where [hy, ly] and [hx, lx] are the bilinear interpolation kernel.

    # shape is [batch_size, boxes, output_size, 2, 1]
    grid_y_one_hot, grid_x_one_hot = get_grid_one_hot(box_gridy0y1,
                                                      box_gridx0x1,
                                                      max_feature_height,
                                                      max_feature_width)

    # shape is [batch_size, num_boxes, output_size, height]
    grid_y_weight = tf.reduce_sum(
        tf.multiply(grid_y_one_hot, kernel_y), axis=-2)
    # shape is [batch_size, num_boxes, output_size, width]
    grid_x_weight = tf.reduce_sum(
        tf.multiply(grid_x_one_hot, kernel_x), axis=-2)

    # Gather for y_axis.
    # shape is [batch_size, num_boxes, output_size, width, features]
    features_per_box = tf.einsum('bmhwf,bmoh->bmowf', features,
                                 tf.cast(grid_y_weight, features.dtype))
    # Gather for x_axis.
    # shape is [batch_size, num_boxes, output_size, output_size, features]
    features_per_box = tf.einsum('bmhwf,bmow->bmhof', features_per_box,
                                 tf.cast(grid_x_weight, features.dtype))
  else:
    height_dim_offset = max_feature_width
    level_dim_offset = max_feature_height * height_dim_offset
    batch_dim_offset = num_levels * level_dim_offset

    batch_size_offset = tf.tile(
        tf.reshape(
            tf.range(batch_size) * batch_dim_offset, [batch_size, 1, 1, 1]),
        [1, num_boxes, output_size * 2, output_size * 2])
    box_levels_offset = tf.tile(
        tf.reshape(box_levels * level_dim_offset,
                   [batch_size, num_boxes, 1, 1]),
        [1, 1, output_size * 2, output_size * 2])
    y_indices_offset = tf.tile(
        tf.reshape(y_indices * height_dim_offset,
                   [batch_size, num_boxes, output_size * 2, 1]),
        [1, 1, 1, output_size * 2])
    x_indices_offset = tf.tile(
        tf.reshape(x_indices, [batch_size, num_boxes, 1, output_size * 2]),
        [1, 1, output_size * 2, 1])

    indices = tf.reshape(
        batch_size_offset + box_levels_offset + y_indices_offset +
        x_indices_offset, [-1])

    features = tf.reshape(features, [-1, num_filters])
    # TODO(wangtao): replace tf.gather with tf.gather_nd and try to get similar
    # performance.
    features_per_box = tf.reshape(
        tf.gather(features, indices),
        [batch_size, num_boxes, output_size * 2, output_size * 2, num_filters])
    features_per_box = feature_bilinear_interpolation(features_per_box,
                                                      kernel_y, kernel_x)

  return features_per_box


def multilevel_crop_and_resize(features, boxes, output_size=7):
  """Crop and resize on multilevel feature pyramid.

  Generate the (output_size, output_size) set of pixels for each input box
  by first locating the box into the correct feature level, and then cropping
  and resizing it using the correspoding feature map of that level.

  Args:
    features: A dictionary with key as pyramid level and value as features. The
      features are in shape of [batch_size, height_l, width_l, num_filters].
    boxes: A 3-D Tensor of shape [batch_size, num_boxes, 4]. Each row represents
      a box with [y1, x1, y2, x2] in un-normalized coordinates.
    output_size: A scalar to indicate the output crop size.

  Returns:
    A 5-D tensor representing feature crop of shape
    [batch_size, num_boxes, output_size, output_size, num_filters].
  """

  with tf.name_scope('multilevel_crop_and_resize'):
    levels = list(features.keys())
    min_level = min(levels)
    max_level = max(levels)
    batch_size, max_feature_height, max_feature_width, num_filters = (
        features[min_level].get_shape().as_list())
    _, num_boxes, _ = boxes.get_shape().as_list()

    # Stack feature pyramid into a features_all of shape
    # [batch_size, levels, height, width, num_filters].
    features_all = []
    feature_heights = []
    feature_widths = []
    for level in range(min_level, max_level + 1):
      shape = features[level].get_shape().as_list()
      feature_heights.append(shape[1])
      feature_widths.append(shape[2])
      # Concat tensor of [batch_size, height_l * width_l, num_filters] for each
      # levels.
      features_all.append(
          tf.reshape(features[level], [batch_size, -1, num_filters]))
      features_r2 = tf.reshape(tf.concat(features_all, 1), [-1, num_filters])

    # Calculate height_l * width_l for each level.
    level_dim_sizes = [
        feature_widths[i] * feature_heights[i]
        for i in range(len(feature_widths))
    ]
    # level_dim_offsets is accumulated sum of level_dim_size.
    level_dim_offsets = [0]
    for i in range(len(feature_widths) - 1):
      level_dim_offsets.append(level_dim_offsets[i] + level_dim_sizes[i])
    batch_dim_size = level_dim_offsets[-1] + level_dim_sizes[-1]
    level_dim_offsets = tf.constant(level_dim_offsets, tf.int32)
    height_dim_sizes = tf.constant(feature_widths, tf.int32)

    # Assigns boxes to the right level.
    box_width = boxes[:, :, 3] - boxes[:, :, 1]
    box_height = boxes[:, :, 2] - boxes[:, :, 0]
    areas_sqrt = tf.sqrt(box_height * box_width)
    levels = tf.cast(
        tf.math.floordiv(
            tf.math.log(tf.divide(areas_sqrt, 224.0)), tf.math.log(2.0)) + 4.0,
        dtype=tf.int32)
    # Maps levels between [min_level, max_level].
    levels = tf.minimum(max_level, tf.maximum(levels, min_level))

    # Projects box location and sizes to corresponding feature levels.
    scale_to_level = tf.cast(
        tf.pow(tf.constant(2.0), tf.cast(levels, tf.float32)),
        dtype=boxes.dtype)
    boxes /= tf.expand_dims(scale_to_level, axis=2)
    box_width /= scale_to_level
    box_height /= scale_to_level
    boxes = tf.concat([
        boxes[:, :, 0:2],
        tf.expand_dims(box_height, -1),
        tf.expand_dims(box_width, -1)
    ],
                      axis=-1)

    # Maps levels to [0, max_level-min_level].
    levels -= min_level
    level_strides = tf.pow([[2.0]], tf.cast(levels, tf.float32))
    boundary = tf.cast(
        tf.concat([
            tf.expand_dims(
                [[tf.cast(max_feature_height, tf.float32)]] / level_strides - 1,
                axis=-1),
            tf.expand_dims(
                [[tf.cast(max_feature_width, tf.float32)]] / level_strides - 1,
                axis=-1),
        ],
                  axis=-1), boxes.dtype)

    # Compute grid positions.
    kernel_y, kernel_x, box_gridy0y1, box_gridx0x1 = compute_grid_positions(
        boxes, boundary, output_size, sample_offset=0.5)

    x_indices = tf.cast(
        tf.reshape(box_gridx0x1, [batch_size, num_boxes, output_size * 2]),
        dtype=tf.int32)
    y_indices = tf.cast(
        tf.reshape(box_gridy0y1, [batch_size, num_boxes, output_size * 2]),
        dtype=tf.int32)

    batch_size_offset = tf.tile(
        tf.reshape(
            tf.range(batch_size) * batch_dim_size, [batch_size, 1, 1, 1]),
        [1, num_boxes, output_size * 2, output_size * 2])
    # Get level offset for each box. Each box belongs to one level.
    levels_offset = tf.tile(
        tf.reshape(
            tf.gather(level_dim_offsets, levels),
            [batch_size, num_boxes, 1, 1]),
        [1, 1, output_size * 2, output_size * 2])
    y_indices_offset = tf.tile(
        tf.reshape(
            y_indices * tf.expand_dims(tf.gather(height_dim_sizes, levels), -1),
            [batch_size, num_boxes, output_size * 2, 1]),
        [1, 1, 1, output_size * 2])
    x_indices_offset = tf.tile(
        tf.reshape(x_indices, [batch_size, num_boxes, 1, output_size * 2]),
        [1, 1, output_size * 2, 1])
    indices = tf.reshape(
        batch_size_offset + levels_offset + y_indices_offset + x_indices_offset,
        [-1])

    # TODO(wangtao): replace tf.gather with tf.gather_nd and try to get similar
    # performance.
    features_per_box = tf.reshape(
        tf.gather(features_r2, indices),
        [batch_size, num_boxes, output_size * 2, output_size * 2, num_filters])

    # Bilinear interpolation.
    features_per_box = feature_bilinear_interpolation(features_per_box,
                                                      kernel_y, kernel_x)
    return features_per_box


def single_level_feature_crop(features, level_boxes, detection_prior_levels,
                              min_mask_level, mask_crop_size):
  """Crop the FPN features at the appropriate levels for each detection.


  Args:
    features: a float tensor of shape [batch_size, num_levels, max_feature_size,
      max_feature_size, num_downsample_channels].
    level_boxes: a float Tensor of the level boxes to crop from. [batch_size,
      num_instances, 4].
    detection_prior_levels: an int Tensor of instance assigned level of shape
      [batch_size, num_instances].
    min_mask_level: minimum FPN level to crop mask feature from.
    mask_crop_size: an int of mask crop size.

  Returns:
    crop_features: a float Tensor of shape [batch_size * num_instances,
        mask_crop_size, mask_crop_size, num_downsample_channels]. This is the
        instance feature crop.
  """
  (batch_size, num_levels, max_feature_size, _,
   num_downsample_channels) = features.get_shape().as_list()
  _, num_of_instances, _ = level_boxes.get_shape().as_list()
  level_boxes = tf.cast(level_boxes, tf.int32)
  assert num_of_instances == detection_prior_levels.get_shape().as_list()[1]

  x_start_indices = level_boxes[:, :, 1]
  y_start_indices = level_boxes[:, :, 0]
  # generate the full indices (not just the starting index)
  x_idx_list = []
  y_idx_list = []
  for i in range(mask_crop_size):
    x_idx_list.append(x_start_indices + i)
    y_idx_list.append(y_start_indices + i)

  x_indices = tf.stack(x_idx_list, axis=2)
  y_indices = tf.stack(y_idx_list, axis=2)
  levels = detection_prior_levels - min_mask_level
  height_dim_size = max_feature_size
  level_dim_size = max_feature_size * height_dim_size
  batch_dim_size = num_levels * level_dim_size
  # TODO(weicheng) change this to gather_nd for better readability.
  indices = tf.reshape(
      tf.tile(
          tf.reshape(
              tf.range(batch_size) * batch_dim_size, [batch_size, 1, 1, 1]),
          [1, num_of_instances, mask_crop_size, mask_crop_size]) + tf.tile(
              tf.reshape(levels * level_dim_size,
                         [batch_size, num_of_instances, 1, 1]),
              [1, 1, mask_crop_size, mask_crop_size]) + tf.tile(
                  tf.reshape(y_indices * height_dim_size,
                             [batch_size, num_of_instances, mask_crop_size, 1]),
                  [1, 1, 1, mask_crop_size]) +
      tf.tile(
          tf.reshape(x_indices,
                     [batch_size, num_of_instances, 1, mask_crop_size]),
          [1, 1, mask_crop_size, 1]), [-1])

  features_r2 = tf.reshape(features, [-1, num_downsample_channels])
  crop_features = tf.reshape(
      tf.gather(features_r2, indices), [
          batch_size * num_of_instances, mask_crop_size, mask_crop_size,
          num_downsample_channels
      ])

  return crop_features


def crop_mask_in_target_box(masks,
                            boxes,
                            target_boxes,
                            output_size,
                            sample_offset=0,
                            use_einsum=True):
  """Crop masks in target boxes.

  Args:
    masks: A tensor with a shape of [batch_size, num_masks, height, width].
    boxes: a float tensor representing box cooridnates that tightly enclose
      masks with a shape of [batch_size, num_masks, 4] in un-normalized
      coordinates. A box is represented by [ymin, xmin, ymax, xmax].
    target_boxes: a float tensor representing target box cooridnates for masks
      with a shape of [batch_size, num_masks, 4] in un-normalized coordinates. A
      box is represented by [ymin, xmin, ymax, xmax].
    output_size: A scalar to indicate the output crop size. It currently only
      supports to output a square shape outputs.
    sample_offset: a float number in [0, 1] indicates the subpixel sample offset
      from grid point.
    use_einsum: Use einsum to replace gather in selective_crop_and_resize.

  Returns:
    A 4-D tensor representing feature crop of shape
    [batch_size, num_boxes, output_size, output_size].
  """
  with tf.name_scope('crop_mask_in_target_box'):
    batch_size, num_masks, height, width = masks.get_shape().as_list()
    masks = tf.reshape(masks, [batch_size * num_masks, height, width, 1])
    # Pad zeros on the boundary of masks.
    masks = tf.image.pad_to_bounding_box(masks, 2, 2, height + 4, width + 4)
    masks = tf.reshape(masks, [batch_size, num_masks, height + 4, width + 4, 1])

    # Projects target box locations and sizes to corresponding cropped
    # mask coordinates.
    gt_y_min, gt_x_min, gt_y_max, gt_x_max = tf.split(
        value=boxes, num_or_size_splits=4, axis=2)
    bb_y_min, bb_x_min, bb_y_max, bb_x_max = tf.split(
        value=target_boxes, num_or_size_splits=4, axis=2)
    y_transform = (bb_y_min - gt_y_min) * height / (gt_y_max - gt_y_min +
                                                    _EPSILON) + 2
    x_transform = (bb_x_min - gt_x_min) * height / (gt_x_max - gt_x_min +
                                                    _EPSILON) + 2
    h_transform = (bb_y_max - bb_y_min) * width / (
        gt_y_max - gt_y_min + _EPSILON)
    w_transform = (bb_x_max - bb_x_min) * width / (
        gt_x_max - gt_x_min + _EPSILON)

    boundaries = tf.concat([
        tf.cast(
            tf.ones_like(y_transform) * ((height + 4) - 1), dtype=tf.float32),
        tf.cast(
            tf.ones_like(x_transform) * ((width + 4) - 1), dtype=tf.float32)
    ],
                           axis=-1)

    # Reshape tensors to have the right shape for selective_crop_and_resize.
    trasnformed_boxes = tf.concat(
        [y_transform, x_transform, h_transform, w_transform], -1)
    levels = tf.tile(
        tf.reshape(tf.range(num_masks), [1, num_masks]), [batch_size, 1])

    cropped_masks = selective_crop_and_resize(
        masks,
        trasnformed_boxes,
        levels,
        boundaries,
        output_size,
        sample_offset=sample_offset,
        use_einsum_gather=use_einsum)
    cropped_masks = tf.squeeze(cropped_masks, axis=-1)

  return cropped_masks