Spaces:
Sleeping
Sleeping
File size: 14,307 Bytes
5672777 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 |
# Copyright 2023 The TensorFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Utility functions for input processing."""
import math
import tensorflow as tf, tf_keras
from official.legacy.detection.utils import box_utils
from official.vision.utils.object_detection import preprocessor
def pad_to_fixed_size(input_tensor, size, constant_values=0):
"""Pads data to a fixed length at the first dimension.
Args:
input_tensor: `Tensor` with any dimension.
size: `int` number for the first dimension of output Tensor.
constant_values: `int` value assigned to the paddings.
Returns:
`Tensor` with the first dimension padded to `size`.
"""
input_shape = input_tensor.get_shape().as_list()
padding_shape = []
# Computes the padding length on the first dimension.
padding_length = tf.maximum(0, size - tf.shape(input_tensor)[0])
assert_length = tf.Assert(
tf.greater_equal(padding_length, 0), [padding_length])
with tf.control_dependencies([assert_length]):
padding_shape.append(padding_length)
# Copies shapes of the rest of input shape dimensions.
for i in range(1, len(input_shape)):
padding_shape.append(tf.shape(input=input_tensor)[i])
# Pads input tensor to the fixed first dimension.
paddings = tf.cast(constant_values * tf.ones(padding_shape),
input_tensor.dtype)
padded_tensor = tf.concat([input_tensor, paddings], axis=0)
output_shape = input_shape
output_shape[0] = size
padded_tensor.set_shape(output_shape)
return padded_tensor
def normalize_image(image,
offset=(0.485, 0.456, 0.406),
scale=(0.229, 0.224, 0.225)):
"""Normalizes the image to zero mean and unit variance."""
image = tf.image.convert_image_dtype(image, dtype=tf.float32)
offset = tf.constant(offset)
offset = tf.expand_dims(offset, axis=0)
offset = tf.expand_dims(offset, axis=0)
image -= offset
scale = tf.constant(scale)
scale = tf.expand_dims(scale, axis=0)
scale = tf.expand_dims(scale, axis=0)
image /= scale
return image
def compute_padded_size(desired_size, stride):
"""Compute the padded size given the desired size and the stride.
The padded size will be the smallest rectangle, such that each dimension is
the smallest multiple of the stride which is larger than the desired
dimension. For example, if desired_size = (100, 200) and stride = 32,
the output padded_size = (128, 224).
Args:
desired_size: a `Tensor` or `int` list/tuple of two elements representing
[height, width] of the target output image size.
stride: an integer, the stride of the backbone network.
Returns:
padded_size: a `Tensor` or `int` list/tuple of two elements representing
[height, width] of the padded output image size.
"""
if isinstance(desired_size, list) or isinstance(desired_size, tuple):
padded_size = [
int(math.ceil(d * 1.0 / stride) * stride) for d in desired_size
]
else:
padded_size = tf.cast(
tf.math.ceil(tf.cast(desired_size, dtype=tf.float32) / stride) * stride,
tf.int32)
return padded_size
def resize_and_crop_image(image,
desired_size,
padded_size,
aug_scale_min=1.0,
aug_scale_max=1.0,
seed=1,
method=tf.image.ResizeMethod.BILINEAR):
"""Resizes the input image to output size.
Resize and pad images given the desired output size of the image and
stride size.
Here are the preprocessing steps.
1. For a given image, keep its aspect ratio and rescale the image to make it
the largest rectangle to be bounded by the rectangle specified by the
`desired_size`.
2. Pad the rescaled image to the padded_size.
Args:
image: a `Tensor` of shape [height, width, 3] representing an image.
desired_size: a `Tensor` or `int` list/tuple of two elements representing
[height, width] of the desired actual output image size.
padded_size: a `Tensor` or `int` list/tuple of two elements representing
[height, width] of the padded output image size. Padding will be applied
after scaling the image to the desired_size.
aug_scale_min: a `float` with range between [0, 1.0] representing minimum
random scale applied to desired_size for training scale jittering.
aug_scale_max: a `float` with range between [1.0, inf] representing maximum
random scale applied to desired_size for training scale jittering.
seed: seed for random scale jittering.
method: function to resize input image to scaled image.
Returns:
output_image: `Tensor` of shape [height, width, 3] where [height, width]
equals to `output_size`.
image_info: a 2D `Tensor` that encodes the information of the image and the
applied preprocessing. It is in the format of
[[original_height, original_width], [desired_height, desired_width],
[y_scale, x_scale], [y_offset, x_offset]], where [desired_height,
desireed_width] is the actual scaled image size, and [y_scale, x_scale] is
the scaling factory, which is the ratio of
scaled dimension / original dimension.
"""
with tf.name_scope('resize_and_crop_image'):
image_size = tf.cast(tf.shape(input=image)[0:2], tf.float32)
random_jittering = (aug_scale_min != 1.0 or aug_scale_max != 1.0)
if random_jittering:
random_scale = tf.random.uniform([],
aug_scale_min,
aug_scale_max,
seed=seed)
scaled_size = tf.round(random_scale * desired_size)
else:
scaled_size = desired_size
scale = tf.minimum(scaled_size[0] / image_size[0],
scaled_size[1] / image_size[1])
scaled_size = tf.round(image_size * scale)
# Computes 2D image_scale.
image_scale = scaled_size / image_size
# Selects non-zero random offset (x, y) if scaled image is larger than
# desired_size.
if random_jittering:
max_offset = scaled_size - desired_size
max_offset = tf.where(
tf.less(max_offset, 0), tf.zeros_like(max_offset), max_offset)
offset = max_offset * tf.random.uniform([
2,
], 0, 1, seed=seed)
offset = tf.cast(offset, tf.int32)
else:
offset = tf.zeros((2,), tf.int32)
scaled_image = tf.image.resize(
image, tf.cast(scaled_size, tf.int32), method=method)
if random_jittering:
scaled_image = scaled_image[offset[0]:offset[0] + desired_size[0],
offset[1]:offset[1] + desired_size[1], :]
output_image = tf.image.pad_to_bounding_box(scaled_image, 0, 0,
padded_size[0], padded_size[1])
image_info = tf.stack([
image_size,
tf.cast(desired_size, dtype=tf.float32), image_scale,
tf.cast(offset, tf.float32)
])
return output_image, image_info
def resize_and_crop_image_v2(image,
short_side,
long_side,
padded_size,
aug_scale_min=1.0,
aug_scale_max=1.0,
seed=1,
method=tf.image.ResizeMethod.BILINEAR):
"""Resizes the input image to output size (Faster R-CNN style).
Resize and pad images given the specified short / long side length and the
stride size.
Here are the preprocessing steps.
1. For a given image, keep its aspect ratio and first try to rescale the short
side of the original image to `short_side`.
2. If the scaled image after 1 has a long side that exceeds `long_side`, keep
the aspect ratio and rescal the long side of the image to `long_side`.
2. Pad the rescaled image to the padded_size.
Args:
image: a `Tensor` of shape [height, width, 3] representing an image.
short_side: a scalar `Tensor` or `int` representing the desired short side
to be rescaled to.
long_side: a scalar `Tensor` or `int` representing the desired long side to
be rescaled to.
padded_size: a `Tensor` or `int` list/tuple of two elements representing
[height, width] of the padded output image size. Padding will be applied
after scaling the image to the desired_size.
aug_scale_min: a `float` with range between [0, 1.0] representing minimum
random scale applied to desired_size for training scale jittering.
aug_scale_max: a `float` with range between [1.0, inf] representing maximum
random scale applied to desired_size for training scale jittering.
seed: seed for random scale jittering.
method: function to resize input image to scaled image.
Returns:
output_image: `Tensor` of shape [height, width, 3] where [height, width]
equals to `output_size`.
image_info: a 2D `Tensor` that encodes the information of the image and the
applied preprocessing. It is in the format of
[[original_height, original_width], [desired_height, desired_width],
[y_scale, x_scale], [y_offset, x_offset]], where [desired_height,
desired_width] is the actual scaled image size, and [y_scale, x_scale] is
the scaling factor, which is the ratio of
scaled dimension / original dimension.
"""
with tf.name_scope('resize_and_crop_image_v2'):
image_size = tf.cast(tf.shape(image)[0:2], tf.float32)
scale_using_short_side = (
short_side / tf.math.minimum(image_size[0], image_size[1]))
scale_using_long_side = (
long_side / tf.math.maximum(image_size[0], image_size[1]))
scaled_size = tf.math.round(image_size * scale_using_short_side)
scaled_size = tf.where(
tf.math.greater(
tf.math.maximum(scaled_size[0], scaled_size[1]), long_side),
tf.math.round(image_size * scale_using_long_side), scaled_size)
desired_size = scaled_size
random_jittering = (aug_scale_min != 1.0 or aug_scale_max != 1.0)
if random_jittering:
random_scale = tf.random.uniform([],
aug_scale_min,
aug_scale_max,
seed=seed)
scaled_size = tf.math.round(random_scale * scaled_size)
# Computes 2D image_scale.
image_scale = scaled_size / image_size
# Selects non-zero random offset (x, y) if scaled image is larger than
# desired_size.
if random_jittering:
max_offset = scaled_size - desired_size
max_offset = tf.where(
tf.math.less(max_offset, 0), tf.zeros_like(max_offset), max_offset)
offset = max_offset * tf.random.uniform([
2,
], 0, 1, seed=seed)
offset = tf.cast(offset, tf.int32)
else:
offset = tf.zeros((2,), tf.int32)
scaled_image = tf.image.resize(
image, tf.cast(scaled_size, tf.int32), method=method)
if random_jittering:
scaled_image = scaled_image[offset[0]:offset[0] + desired_size[0],
offset[1]:offset[1] + desired_size[1], :]
output_image = tf.image.pad_to_bounding_box(scaled_image, 0, 0,
padded_size[0], padded_size[1])
image_info = tf.stack([
image_size,
tf.cast(desired_size, dtype=tf.float32), image_scale,
tf.cast(offset, tf.float32)
])
return output_image, image_info
def resize_and_crop_boxes(boxes, image_scale, output_size, offset):
"""Resizes boxes to output size with scale and offset.
Args:
boxes: `Tensor` of shape [N, 4] representing ground truth boxes.
image_scale: 2D float `Tensor` representing scale factors that apply to
[height, width] of input image.
output_size: 2D `Tensor` or `int` representing [height, width] of target
output image size.
offset: 2D `Tensor` representing top-left corner [y0, x0] to crop scaled
boxes.
Returns:
boxes: `Tensor` of shape [N, 4] representing the scaled boxes.
"""
# Adjusts box coordinates based on image_scale and offset.
boxes *= tf.tile(tf.expand_dims(image_scale, axis=0), [1, 2])
boxes -= tf.tile(tf.expand_dims(offset, axis=0), [1, 2])
# Clips the boxes.
boxes = box_utils.clip_boxes(boxes, output_size)
return boxes
def resize_and_crop_masks(masks, image_scale, output_size, offset):
"""Resizes boxes to output size with scale and offset.
Args:
masks: `Tensor` of shape [N, H, W, 1] representing ground truth masks.
image_scale: 2D float `Tensor` representing scale factors that apply to
[height, width] of input image.
output_size: 2D `Tensor` or `int` representing [height, width] of target
output image size.
offset: 2D `Tensor` representing top-left corner [y0, x0] to crop scaled
boxes.
Returns:
masks: `Tensor` of shape [N, H, W, 1] representing the scaled masks.
"""
mask_size = tf.shape(input=masks)[1:3]
scaled_size = tf.cast(image_scale * tf.cast(mask_size, image_scale.dtype),
tf.int32)
scaled_masks = tf.image.resize(
masks, scaled_size, method=tf.image.ResizeMethod.NEAREST_NEIGHBOR)
offset = tf.cast(offset, tf.int32)
scaled_masks = scaled_masks[:, offset[0]:offset[0] + output_size[0],
offset[1]:offset[1] + output_size[1], :]
output_masks = tf.image.pad_to_bounding_box(scaled_masks, 0, 0,
output_size[0], output_size[1])
return output_masks
def random_horizontal_flip(image, boxes=None, masks=None):
"""Randomly flips input image and bounding boxes."""
return preprocessor.random_horizontal_flip(image, boxes, masks)
|