Spaces:
Sleeping
Sleeping
File size: 6,647 Bytes
5672777 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 |
# Copyright 2023 The TensorFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Utility functions for segmentations."""
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import math
import cv2
import numpy as np
def paste_instance_masks(masks, detected_boxes, image_height, image_width):
"""Paste instance masks to generate the image segmentation results.
Args:
masks: a numpy array of shape [N, mask_height, mask_width] representing the
instance masks w.r.t. the `detected_boxes`.
detected_boxes: a numpy array of shape [N, 4] representing the reference
bounding boxes.
image_height: an integer representing the height of the image.
image_width: an integer representing the width of the image.
Returns:
segms: a numpy array of shape [N, image_height, image_width] representing
the instance masks *pasted* on the image canvas.
"""
def expand_boxes(boxes, scale):
"""Expands an array of boxes by a given scale."""
# Reference: https://github.com/facebookresearch/Detectron/blob/master/detectron/utils/boxes.py#L227 # pylint: disable=line-too-long
# The `boxes` in the reference implementation is in [x1, y1, x2, y2] form,
# whereas `boxes` here is in [x1, y1, w, h] form
w_half = boxes[:, 2] * .5
h_half = boxes[:, 3] * .5
x_c = boxes[:, 0] + w_half
y_c = boxes[:, 1] + h_half
w_half *= scale
h_half *= scale
boxes_exp = np.zeros(boxes.shape)
boxes_exp[:, 0] = x_c - w_half
boxes_exp[:, 2] = x_c + w_half
boxes_exp[:, 1] = y_c - h_half
boxes_exp[:, 3] = y_c + h_half
return boxes_exp
# Reference: https://github.com/facebookresearch/Detectron/blob/master/detectron/core/test.py#L812 # pylint: disable=line-too-long
# To work around an issue with cv2.resize (it seems to automatically pad
# with repeated border values), we manually zero-pad the masks by 1 pixel
# prior to resizing back to the original image resolution. This prevents
# "top hat" artifacts. We therefore need to expand the reference boxes by an
# appropriate factor.
_, mask_height, mask_width = masks.shape
scale = max((mask_width + 2.0) / mask_width,
(mask_height + 2.0) / mask_height)
ref_boxes = expand_boxes(detected_boxes, scale)
ref_boxes = ref_boxes.astype(np.int32)
padded_mask = np.zeros((mask_height + 2, mask_width + 2), dtype=np.float32)
segms = []
for mask_ind, mask in enumerate(masks):
im_mask = np.zeros((image_height, image_width), dtype=np.uint8)
# Process mask inside bounding boxes.
padded_mask[1:-1, 1:-1] = mask[:, :]
ref_box = ref_boxes[mask_ind, :]
w = ref_box[2] - ref_box[0] + 1
h = ref_box[3] - ref_box[1] + 1
w = np.maximum(w, 1)
h = np.maximum(h, 1)
mask = cv2.resize(padded_mask, (w, h))
mask = np.array(mask > 0.5, dtype=np.uint8)
x_0 = min(max(ref_box[0], 0), image_width)
x_1 = min(max(ref_box[2] + 1, 0), image_width)
y_0 = min(max(ref_box[1], 0), image_height)
y_1 = min(max(ref_box[3] + 1, 0), image_height)
im_mask[y_0:y_1, x_0:x_1] = mask[(y_0 - ref_box[1]):(y_1 - ref_box[1]),
(x_0 - ref_box[0]):(x_1 - ref_box[0])]
segms.append(im_mask)
segms = np.array(segms)
assert masks.shape[0] == segms.shape[0]
return segms
def paste_instance_masks_v2(masks, detected_boxes, image_height, image_width):
"""Paste instance masks to generate the image segmentation (v2).
Args:
masks: a numpy array of shape [N, mask_height, mask_width] representing the
instance masks w.r.t. the `detected_boxes`.
detected_boxes: a numpy array of shape [N, 4] representing the reference
bounding boxes.
image_height: an integer representing the height of the image.
image_width: an integer representing the width of the image.
Returns:
segms: a numpy array of shape [N, image_height, image_width] representing
the instance masks *pasted* on the image canvas.
"""
_, mask_height, mask_width = masks.shape
segms = []
for i, mask in enumerate(masks):
box = detected_boxes[i, :]
xmin = box[0]
ymin = box[1]
xmax = xmin + box[2]
ymax = ymin + box[3]
# Sample points of the cropped mask w.r.t. the image grid.
# Note that these coordinates may fall beyond the image.
# Pixel clipping will happen after warping.
xmin_int = int(math.floor(xmin))
xmax_int = int(math.ceil(xmax))
ymin_int = int(math.floor(ymin))
ymax_int = int(math.ceil(ymax))
alpha = box[2] / (1.0 * mask_width)
beta = box[3] / (1.0 * mask_height)
# pylint: disable=invalid-name
# Transformation from mask pixel indices to image coordinate.
M_mask_to_image = np.array([[alpha, 0, xmin], [0, beta, ymin], [0, 0, 1]],
dtype=np.float32)
# Transformation from image to cropped mask coordinate.
M_image_to_crop = np.array(
[[1, 0, -xmin_int], [0, 1, -ymin_int], [0, 0, 1]], dtype=np.float32)
M = np.dot(M_image_to_crop, M_mask_to_image)
# Compensate the half pixel offset that OpenCV has in the
# warpPerspective implementation: the top-left pixel is sampled
# at (0,0), but we want it to be at (0.5, 0.5).
M = np.dot(
np.dot(
np.array([[1, 0, -0.5], [0, 1, -0.5], [0, 0, 1]], np.float32), M),
np.array([[1, 0, 0.5], [0, 1, 0.5], [0, 0, 1]], np.float32))
# pylint: enable=invalid-name
cropped_mask = cv2.warpPerspective(
mask.astype(np.float32), M, (xmax_int - xmin_int, ymax_int - ymin_int))
cropped_mask = np.array(cropped_mask > 0.5, dtype=np.uint8)
img_mask = np.zeros((image_height, image_width))
x0 = max(min(xmin_int, image_width), 0)
x1 = max(min(xmax_int, image_width), 0)
y0 = max(min(ymin_int, image_height), 0)
y1 = max(min(ymax_int, image_height), 0)
img_mask[y0:y1, x0:x1] = cropped_mask[(y0 - ymin_int):(y1 - ymin_int),
(x0 - xmin_int):(x1 - xmin_int)]
segms.append(img_mask)
segms = np.array(segms)
return segms
|