File size: 6,647 Bytes
5672777
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
# Copyright 2023 The TensorFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

"""Utility functions for segmentations."""
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function

import math

import cv2
import numpy as np


def paste_instance_masks(masks, detected_boxes, image_height, image_width):
  """Paste instance masks to generate the image segmentation results.

  Args:
    masks: a numpy array of shape [N, mask_height, mask_width] representing the
      instance masks w.r.t. the `detected_boxes`.
    detected_boxes: a numpy array of shape [N, 4] representing the reference
      bounding boxes.
    image_height: an integer representing the height of the image.
    image_width: an integer representing the width of the image.

  Returns:
    segms: a numpy array of shape [N, image_height, image_width] representing
      the instance masks *pasted* on the image canvas.
  """

  def expand_boxes(boxes, scale):
    """Expands an array of boxes by a given scale."""
    # Reference: https://github.com/facebookresearch/Detectron/blob/master/detectron/utils/boxes.py#L227  # pylint: disable=line-too-long
    # The `boxes` in the reference implementation is in [x1, y1, x2, y2] form,
    # whereas `boxes` here is in [x1, y1, w, h] form
    w_half = boxes[:, 2] * .5
    h_half = boxes[:, 3] * .5
    x_c = boxes[:, 0] + w_half
    y_c = boxes[:, 1] + h_half

    w_half *= scale
    h_half *= scale

    boxes_exp = np.zeros(boxes.shape)
    boxes_exp[:, 0] = x_c - w_half
    boxes_exp[:, 2] = x_c + w_half
    boxes_exp[:, 1] = y_c - h_half
    boxes_exp[:, 3] = y_c + h_half

    return boxes_exp

  # Reference: https://github.com/facebookresearch/Detectron/blob/master/detectron/core/test.py#L812  # pylint: disable=line-too-long
  # To work around an issue with cv2.resize (it seems to automatically pad
  # with repeated border values), we manually zero-pad the masks by 1 pixel
  # prior to resizing back to the original image resolution. This prevents
  # "top hat" artifacts. We therefore need to expand the reference boxes by an
  # appropriate factor.
  _, mask_height, mask_width = masks.shape
  scale = max((mask_width + 2.0) / mask_width,
              (mask_height + 2.0) / mask_height)

  ref_boxes = expand_boxes(detected_boxes, scale)
  ref_boxes = ref_boxes.astype(np.int32)
  padded_mask = np.zeros((mask_height + 2, mask_width + 2), dtype=np.float32)
  segms = []
  for mask_ind, mask in enumerate(masks):
    im_mask = np.zeros((image_height, image_width), dtype=np.uint8)
    # Process mask inside bounding boxes.
    padded_mask[1:-1, 1:-1] = mask[:, :]

    ref_box = ref_boxes[mask_ind, :]
    w = ref_box[2] - ref_box[0] + 1
    h = ref_box[3] - ref_box[1] + 1
    w = np.maximum(w, 1)
    h = np.maximum(h, 1)

    mask = cv2.resize(padded_mask, (w, h))
    mask = np.array(mask > 0.5, dtype=np.uint8)

    x_0 = min(max(ref_box[0], 0), image_width)
    x_1 = min(max(ref_box[2] + 1, 0), image_width)
    y_0 = min(max(ref_box[1], 0), image_height)
    y_1 = min(max(ref_box[3] + 1, 0), image_height)

    im_mask[y_0:y_1, x_0:x_1] = mask[(y_0 - ref_box[1]):(y_1 - ref_box[1]),
                                     (x_0 - ref_box[0]):(x_1 - ref_box[0])]
    segms.append(im_mask)

  segms = np.array(segms)
  assert masks.shape[0] == segms.shape[0]
  return segms


def paste_instance_masks_v2(masks, detected_boxes, image_height, image_width):
  """Paste instance masks to generate the image segmentation (v2).

  Args:
    masks: a numpy array of shape [N, mask_height, mask_width] representing the
      instance masks w.r.t. the `detected_boxes`.
    detected_boxes: a numpy array of shape [N, 4] representing the reference
      bounding boxes.
    image_height: an integer representing the height of the image.
    image_width: an integer representing the width of the image.

  Returns:
    segms: a numpy array of shape [N, image_height, image_width] representing
      the instance masks *pasted* on the image canvas.
  """
  _, mask_height, mask_width = masks.shape

  segms = []
  for i, mask in enumerate(masks):
    box = detected_boxes[i, :]
    xmin = box[0]
    ymin = box[1]
    xmax = xmin + box[2]
    ymax = ymin + box[3]

    # Sample points of the cropped mask w.r.t. the image grid.
    # Note that these coordinates may fall beyond the image.
    # Pixel clipping will happen after warping.
    xmin_int = int(math.floor(xmin))
    xmax_int = int(math.ceil(xmax))
    ymin_int = int(math.floor(ymin))
    ymax_int = int(math.ceil(ymax))

    alpha = box[2] / (1.0 * mask_width)
    beta = box[3] / (1.0 * mask_height)
    # pylint: disable=invalid-name
    # Transformation from mask pixel indices to image coordinate.
    M_mask_to_image = np.array([[alpha, 0, xmin], [0, beta, ymin], [0, 0, 1]],
                               dtype=np.float32)
    # Transformation from image to cropped mask coordinate.
    M_image_to_crop = np.array(
        [[1, 0, -xmin_int], [0, 1, -ymin_int], [0, 0, 1]], dtype=np.float32)
    M = np.dot(M_image_to_crop, M_mask_to_image)
    # Compensate the half pixel offset that OpenCV has in the
    # warpPerspective implementation: the top-left pixel is sampled
    # at (0,0), but we want it to be at (0.5, 0.5).
    M = np.dot(
        np.dot(
            np.array([[1, 0, -0.5], [0, 1, -0.5], [0, 0, 1]], np.float32), M),
        np.array([[1, 0, 0.5], [0, 1, 0.5], [0, 0, 1]], np.float32))
    # pylint: enable=invalid-name
    cropped_mask = cv2.warpPerspective(
        mask.astype(np.float32), M, (xmax_int - xmin_int, ymax_int - ymin_int))
    cropped_mask = np.array(cropped_mask > 0.5, dtype=np.uint8)

    img_mask = np.zeros((image_height, image_width))
    x0 = max(min(xmin_int, image_width), 0)
    x1 = max(min(xmax_int, image_width), 0)
    y0 = max(min(ymin_int, image_height), 0)
    y1 = max(min(ymax_int, image_height), 0)
    img_mask[y0:y1, x0:x1] = cropped_mask[(y0 - ymin_int):(y1 - ymin_int),
                                          (x0 - xmin_int):(x1 - xmin_int)]

    segms.append(img_mask)

  segms = np.array(segms)
  return segms