File size: 7,571 Bytes
5672777
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
# Copyright 2023 The TensorFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

"""Configuration utils for image classification experiments."""

import dataclasses

from official.legacy.image_classification import dataset_factory
from official.legacy.image_classification.configs import base_configs
from official.legacy.image_classification.efficientnet import efficientnet_config
from official.legacy.image_classification.resnet import resnet_config
from official.legacy.image_classification.vgg import vgg_config


@dataclasses.dataclass
class EfficientNetImageNetConfig(base_configs.ExperimentConfig):
  """Base configuration to train efficientnet-b0 on ImageNet.

  Attributes:
    export: An `ExportConfig` instance
    runtime: A `RuntimeConfig` instance.
    dataset: A `DatasetConfig` instance.
    train: A `TrainConfig` instance.
    evaluation: An `EvalConfig` instance.
    model: A `ModelConfig` instance.
  """
  export: base_configs.ExportConfig = dataclasses.field(
      default_factory=base_configs.ExportConfig
  )
  runtime: base_configs.RuntimeConfig = dataclasses.field(
      default_factory=base_configs.RuntimeConfig
  )
  train_dataset: dataset_factory.DatasetConfig = dataclasses.field(
      default_factory=lambda: dataset_factory.ImageNetConfig(split='train')
  )
  validation_dataset: dataset_factory.DatasetConfig = dataclasses.field(
      default_factory=lambda: dataset_factory.ImageNetConfig(split='validation')
  )
  train: base_configs.TrainConfig = dataclasses.field(
      default_factory=lambda: base_configs.TrainConfig(  # pylint: disable=g-long-lambda
          resume_checkpoint=True,
          epochs=500,
          steps=None,
          callbacks=base_configs.CallbacksConfig(
              enable_checkpoint_and_export=True, enable_tensorboard=True
          ),
          metrics=['accuracy', 'top_5'],
          time_history=base_configs.TimeHistoryConfig(log_steps=100),
          tensorboard=base_configs.TensorBoardConfig(
              track_lr=True, write_model_weights=False
          ),
          set_epoch_loop=False,
      )
  )
  evaluation: base_configs.EvalConfig = dataclasses.field(
      default_factory=lambda: base_configs.EvalConfig(  # pylint: disable=g-long-lambda
          epochs_between_evals=1, steps=None
      )
  )
  model: base_configs.ModelConfig = dataclasses.field(
      default_factory=efficientnet_config.EfficientNetModelConfig
  )


@dataclasses.dataclass
class ResNetImagenetConfig(base_configs.ExperimentConfig):
  """Base configuration to train resnet-50 on ImageNet."""
  export: base_configs.ExportConfig = dataclasses.field(
      default_factory=base_configs.ExportConfig
  )
  runtime: base_configs.RuntimeConfig = dataclasses.field(
      default_factory=base_configs.RuntimeConfig
  )
  train_dataset: dataset_factory.DatasetConfig = dataclasses.field(
      default_factory=lambda: dataset_factory.ImageNetConfig(  # pylint: disable=g-long-lambda
          split='train', one_hot=False, mean_subtract=True, standardize=True
      )
  )
  validation_dataset: dataset_factory.DatasetConfig = dataclasses.field(
      default_factory=lambda: dataset_factory.ImageNetConfig(  # pylint: disable=g-long-lambda
          split='validation',
          one_hot=False,
          mean_subtract=True,
          standardize=True,
      )
  )
  train: base_configs.TrainConfig = dataclasses.field(
      default_factory=lambda: base_configs.TrainConfig(  # pylint: disable=g-long-lambda
          resume_checkpoint=True,
          epochs=90,
          steps=None,
          callbacks=base_configs.CallbacksConfig(
              enable_checkpoint_and_export=True, enable_tensorboard=True
          ),
          metrics=['accuracy', 'top_5'],
          time_history=base_configs.TimeHistoryConfig(log_steps=100),
          tensorboard=base_configs.TensorBoardConfig(
              track_lr=True, write_model_weights=False
          ),
          set_epoch_loop=False,
      )
  )
  evaluation: base_configs.EvalConfig = dataclasses.field(
      default_factory=lambda: base_configs.EvalConfig(  # pylint: disable=g-long-lambda
          epochs_between_evals=1, steps=None
      )
  )
  model: base_configs.ModelConfig = dataclasses.field(
      default_factory=resnet_config.ResNetModelConfig
  )


@dataclasses.dataclass
class VGGImagenetConfig(base_configs.ExperimentConfig):
  """Base configuration to train vgg-16 on ImageNet."""
  export: base_configs.ExportConfig = dataclasses.field(
      default_factory=base_configs.ExportConfig
  )
  runtime: base_configs.RuntimeConfig = dataclasses.field(
      default_factory=base_configs.RuntimeConfig
  )
  train_dataset: dataset_factory.DatasetConfig = dataclasses.field(
      default_factory=lambda: dataset_factory.ImageNetConfig(  # pylint: disable=g-long-lambda
          split='train', one_hot=False, mean_subtract=True, standardize=True
      )
  )
  validation_dataset: dataset_factory.DatasetConfig = dataclasses.field(
      default_factory=lambda: dataset_factory.ImageNetConfig(  # pylint: disable=g-long-lambda
          split='validation',
          one_hot=False,
          mean_subtract=True,
          standardize=True,
      )
  )
  train: base_configs.TrainConfig = dataclasses.field(
      default_factory=lambda: base_configs.TrainConfig(  # pylint: disable=g-long-lambda
          resume_checkpoint=True,
          epochs=90,
          steps=None,
          callbacks=base_configs.CallbacksConfig(
              enable_checkpoint_and_export=True, enable_tensorboard=True
          ),
          metrics=['accuracy', 'top_5'],
          time_history=base_configs.TimeHistoryConfig(log_steps=100),
          tensorboard=base_configs.TensorBoardConfig(
              track_lr=True, write_model_weights=False
          ),
          set_epoch_loop=False,
      )
  )
  evaluation: base_configs.EvalConfig = dataclasses.field(
      default_factory=lambda: base_configs.EvalConfig(  # pylint: disable=g-long-lambda
          epochs_between_evals=1, steps=None
      )
  )
  model: base_configs.ModelConfig = dataclasses.field(
      default_factory=vgg_config.VGGModelConfig
  )


def get_config(model: str, dataset: str) -> base_configs.ExperimentConfig:
  """Given model and dataset names, return the ExperimentConfig."""
  dataset_model_config_map = {
      'imagenet': {
          'efficientnet': EfficientNetImageNetConfig(),
          'resnet': ResNetImagenetConfig(),
          'vgg': VGGImagenetConfig(),
      }
  }
  try:
    return dataset_model_config_map[dataset][model]
  except KeyError:
    if dataset not in dataset_model_config_map:
      raise KeyError('Invalid dataset received. Received: {}. Supported '
                     'datasets include: {}'.format(
                         dataset, ', '.join(dataset_model_config_map.keys())))
    raise KeyError('Invalid model received. Received: {}. Supported models for'
                   '{} include: {}'.format(
                       model, dataset,
                       ', '.join(dataset_model_config_map[dataset].keys())))