File size: 6,668 Bytes
5672777
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
# Copyright 2023 The TensorFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

"""Test Subtokenizer and string helper methods."""

import collections
import tempfile

import tensorflow as tf, tf_keras

from official.legacy.transformer.utils import tokenizer


class SubtokenizerTest(tf.test.TestCase):

  def _init_subtokenizer(self, vocab_list):
    temp_file = tempfile.NamedTemporaryFile(delete=False)
    with tf.io.gfile.GFile(temp_file.name, "w") as w:
      for subtoken in vocab_list:
        w.write("'%s'" % subtoken)
        w.write("\n")
    return tokenizer.Subtokenizer(temp_file.name, reserved_tokens=[])

  def test_encode(self):
    vocab_list = ["123_", "test", "ing_"]
    subtokenizer = self._init_subtokenizer(vocab_list)
    s = "testing 123"
    encoded_list = subtokenizer.encode(s)
    self.assertEqual([1, 2, 0], encoded_list)

  def test_decode(self):
    vocab_list = ["123_", "test", "ing_"]
    subtokenizer = self._init_subtokenizer(vocab_list)
    encoded_list = [1, 2, 0]  # testing 123
    decoded_str = subtokenizer.decode(encoded_list)
    self.assertEqual("testing 123", decoded_str)

  def test_subtoken_ids_to_tokens(self):
    vocab_list = ["123_", "test", "ing_"]
    subtokenizer = self._init_subtokenizer(vocab_list)
    encoded_list = [1, 2, 0]  # testing 123
    token_list = subtokenizer._subtoken_ids_to_tokens(encoded_list)
    self.assertEqual([u"testing", u"123"], token_list)


class StringHelperTest(tf.test.TestCase):

  def test_split_string_to_tokens(self):
    text = "test? testing 123."

    tokens = tokenizer._split_string_to_tokens(text,
                                               tokenizer._ALPHANUMERIC_CHAR_SET)
    self.assertEqual(["test", "? ", "testing", "123", "."], tokens)

  def test_join_tokens_to_string(self):
    tokens = ["test", "? ", "testing", "123", "."]

    s = tokenizer._join_tokens_to_string(tokens,
                                         tokenizer._ALPHANUMERIC_CHAR_SET)
    self.assertEqual("test? testing 123.", s)

  def test_escape_token(self):
    token = u"abc_\\4"
    alphabet = set("abc_\\u;")

    escaped_token = tokenizer._escape_token(token, alphabet)
    self.assertEqual("abc\\u\\\\\\52;_", escaped_token)

  def test_unescape_token(self):
    escaped_token = u"Underline: \\u, Backslash: \\\\, Unicode: \\52;"

    unescaped_token = tokenizer._unescape_token(escaped_token)
    self.assertEqual("Underline: _, Backslash: \\, Unicode: 4", unescaped_token)

  def test_list_to_index_dict(self):
    lst = ["test", "strings"]

    d = tokenizer._list_to_index_dict(lst)
    self.assertDictEqual({"test": 0, "strings": 1}, d)

  def test_split_token_to_subtokens(self):
    token = "abc"
    subtoken_dict = {"a": 0, "b": 1, "c": 2, "ab": 3}
    max_subtoken_length = 2

    subtokens = tokenizer._split_token_to_subtokens(token, subtoken_dict,
                                                    max_subtoken_length)
    self.assertEqual(["ab", "c"], subtokens)

  def test_generate_alphabet_dict(self):
    s = ["testing", "123"]
    reserved_tokens = ["???"]

    alphabet = tokenizer._generate_alphabet_dict(s, reserved_tokens)
    self.assertIn("?", alphabet)
    self.assertIn("t", alphabet)
    self.assertIn("e", alphabet)
    self.assertIn("s", alphabet)
    self.assertIn("i", alphabet)
    self.assertIn("n", alphabet)
    self.assertIn("g", alphabet)
    self.assertIn("1", alphabet)
    self.assertIn("2", alphabet)
    self.assertIn("3", alphabet)

  def test_count_and_gen_subtokens(self):
    token_counts = {"abc": 5}
    alphabet = set("abc_")
    subtoken_dict = {"a": 0, "b": 1, "c": 2, "_": 3}
    max_subtoken_length = 2

    subtoken_counts = tokenizer._count_and_gen_subtokens(
        token_counts, alphabet, subtoken_dict, max_subtoken_length)

    self.assertIsInstance(subtoken_counts, collections.defaultdict)
    self.assertDictEqual(
        {
            "a": 5,
            "b": 5,
            "c": 5,
            "_": 5,
            "ab": 5,
            "bc": 5,
            "c_": 5,
            "abc": 5,
            "bc_": 5,
            "abc_": 5
        }, subtoken_counts)

  def test_filter_and_bucket_subtokens(self):
    subtoken_counts = collections.defaultdict(int, {
        "a": 2,
        "b": 4,
        "c": 1,
        "ab": 6,
        "ac": 3,
        "abbc": 5
    })
    min_count = 3

    subtoken_buckets = tokenizer._filter_and_bucket_subtokens(
        subtoken_counts, min_count)

    self.assertEqual(len(subtoken_buckets[0]), 0)
    self.assertEqual(set("b"), subtoken_buckets[1])
    self.assertEqual(set(["ab", "ac"]), subtoken_buckets[2])
    self.assertEqual(len(subtoken_buckets[3]), 0)
    self.assertEqual(set(["abbc"]), subtoken_buckets[4])

  def test_gen_new_subtoken_list(self):
    subtoken_counts = collections.defaultdict(int, {
        "translate": 10,
        "t": 40,
        "tr": 16,
        "tra": 12
    })
    min_count = 5
    alphabet = set("translate")
    reserved_tokens = ["reserved", "tokens"]

    subtoken_list, max_token_length = tokenizer._gen_new_subtoken_list(
        subtoken_counts, min_count, alphabet, reserved_tokens)

    # Check that "tra" isn"t in the list (its count should be decremented to 2,
    # so it should not be added to the canddiate list).
    self.assertNotIn("tra", subtoken_list)

    self.assertIn("tr", subtoken_list)
    self.assertIn("t", subtoken_list)

    self.assertEqual(len("translate"), max_token_length)

  def test_generate_subtokens(self):
    token_counts = {"ab": 1, "bc": 3, "abc": 5}
    alphabet = set("abc_")
    min_count = 100
    num_iterations = 1
    reserved_tokens = ["reserved", "tokens"]

    vocab_list = tokenizer._generate_subtokens(token_counts, alphabet,
                                               min_count, num_iterations,
                                               reserved_tokens)

    # Check that reserved tokens are at the front of the list
    self.assertEqual(vocab_list[:2], reserved_tokens)

    # Check that each character in alphabet is in the vocab list
    for c in alphabet:
      self.assertIn(c, vocab_list)


if __name__ == "__main__":
  tf.test.main()