File size: 47,605 Bytes
5672777
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
# Copyright 2023 The TensorFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

"""Keras layers of XLNet model in TF 2.0."""

import copy
import warnings

import tensorflow as tf, tf_keras
from official.legacy.xlnet import data_utils
from official.nlp.modeling import networks


def gelu(x):
  return tf_keras.activations.gelu(x, approximate=True)


def _get_initializer(flags):
  """Get variable initializer."""
  if flags.init_method == "uniform":
    initializer = tf_keras.initializers.RandomUniform(
        minval=-flags.init_range, maxval=flags.init_range)
  elif flags.init_method == "normal":
    initializer = tf_keras.initializers.RandomNormal(stddev=flags.init_std)
  else:
    raise ValueError("Initializer {} not supported".format(flags.init_method))
  return initializer


def rel_shift(x, klen=-1):
  """Performs relative shift to form the relative attention score."""
  x_size = tf.shape(x)

  x = tf.reshape(x, [x_size[1], x_size[0], x_size[2], x_size[3]])
  x = tf.slice(x, [1, 0, 0, 0], [-1, -1, -1, -1])
  x = tf.reshape(x, [x_size[0], x_size[1] - 1, x_size[2], x_size[3]])
  x = tf.slice(x, [0, 0, 0, 0], [-1, klen, -1, -1])

  return x


def _create_mask(qlen, mlen, dtype=tf.float32, same_length=False):
  """Creates attention mask when single-side context allowed only."""
  attn_mask = tf.ones([qlen, qlen], dtype=dtype)
  mask_u = tf.linalg.band_part(attn_mask, 0, -1)
  mask_dia = tf.linalg.band_part(attn_mask, 0, 0)
  attn_mask_pad = tf.zeros([qlen, mlen], dtype=dtype)
  ret = tf.concat([attn_mask_pad, mask_u - mask_dia], 1)
  if same_length:
    mask_l = tf.linalg.band_part(attn_mask, -1, 0)
    ret = tf.concat([ret[:, :qlen] + mask_l - mask_dia, ret[:, qlen:]], 1)

  return ret


def _cache_mem(curr_out, prev_mem, mem_len, reuse_len=None):
  """cache hidden states into memory."""

  if mem_len is None or mem_len == 0:
    return None
  else:
    if reuse_len is not None and reuse_len > 0:
      curr_out = curr_out[:reuse_len]

    if prev_mem is None:
      new_mem = curr_out[-mem_len:]
    else:
      new_mem = tf.concat([prev_mem, curr_out], 0)[-mem_len:]

  return tf_keras.backend.stop_gradient(new_mem)


def is_special_none_tensor(tensor):
  """Checks if a tensor is a special None Tensor."""
  return tensor.shape.ndims == 0 and tensor.dtype == tf.int32


@tf_keras.utils.register_keras_serializable(package="Text")
class RelativePositionEncoding(tf_keras.layers.Layer):
  """Creates a relative positional encoding.

  This layer creates a relative positional encoding as described in
  "Transformer-XL: Attentive Language Models Beyond a Fixed-Length Context"
  (https://arxiv.org/abs/1901.02860).

  Rather than an absolute position embedding as in Transformer, this
  formulation represents position as the relative distance between tokens using
  sinusoidal positional embeddings.

  Note: This layer is currently experimental.

  Attributes:
    hidden_size: The dimensionality of the input embeddings.
  """

  def __init__(self, hidden_size, **kwargs):
    super(RelativePositionEncoding, self).__init__(**kwargs)
    self._hidden_size = hidden_size
    self._inv_freq = 1.0 / (10000.0**(
        tf.range(0, self._hidden_size, 2.0) / self._hidden_size))

  def call(self, pos_seq, batch_size=None):
    """Implements call() for the layer.

    Args:
      pos_seq: A 1-D `Tensor`
      batch_size: The optionally provided batch size that tiles the relative
        positional encoding.

    Returns:
      The relative positional encoding of shape:
        [len(pos_seq), batch_size, hidden_size] if batch_size is provided, else
        [len(pos_seq), 1, hidden_size].
    """
    sinusoid_input = tf.einsum("i,d->id", pos_seq, self._inv_freq)
    pos_emb = tf.concat([tf.sin(sinusoid_input), tf.cos(sinusoid_input)], -1)
    pos_emb = pos_emb[:, None, :]

    if batch_size is not None:
      pos_emb = tf.tile(pos_emb, [1, batch_size, 1])
    return pos_emb


class RelativeAttention(tf_keras.layers.Layer):
  """Core calculations for relative attention."""

  def __init__(self, dropout_att, scale):
    super(RelativeAttention, self).__init__()
    self.scale = scale
    self.dropout_att = dropout_att

  def build(self, unused_input_shapes):
    """Implements build() for the layer."""

    self.attention_probs_dropout = tf_keras.layers.Dropout(
        rate=self.dropout_att)

    super(RelativeAttention, self).build(unused_input_shapes)

  def call(self, q_head, k_head_h, v_head_h, k_head_r, seg_embed, seg_mat,
           r_w_bias, r_r_bias, r_s_bias, attn_mask):
    """Implements call() for the layer."""

    # content based attention score
    ac = tf.einsum("ibnd,jbnd->ijbn", q_head + r_w_bias, k_head_h)

    # position based attention score
    bd = tf.einsum("ibnd,jbnd->ijbn", q_head + r_r_bias, k_head_r)
    bd = rel_shift(bd, klen=tf.shape(ac)[1])

    # segment-based attention score
    if seg_mat is None:
      ef = 0
    else:
      ef = tf.einsum("ibnd,snd->isbn", q_head + r_s_bias, seg_embed)
      tgt_shape = tf.shape(bd)
      ef = tf.where(
          tf.broadcast_to(tf.expand_dims(seg_mat, 3), tgt_shape),
          tf.broadcast_to(ef[:, 1:, :, :], tgt_shape),
          tf.broadcast_to(ef[:, :1, :, :], tgt_shape))

    # merges attention scores and performs masking
    attn_score = (ac + bd + ef) * self.scale
    if attn_mask is not None:
      attn_score = attn_score - 1e30 * attn_mask

    # attention probability
    attn_prob = tf.nn.softmax(attn_score, 1)
    attn_prob = self.attention_probs_dropout(attn_prob)

    # attention output
    attn_vec = tf.einsum("ijbn,jbnd->ibnd", attn_prob, v_head_h)

    return attn_vec


class PositionwiseFF(tf_keras.layers.Layer):
  """Positionwise feed-forward layer."""

  def __init__(self, d_model, d_inner, dropout, kernel_initializer,
               activation_type, **kwargs):
    super(PositionwiseFF, self).__init__(**kwargs)
    self.d_model = d_model
    self.d_inner = d_inner
    self.dropout = dropout
    self.activation_type = activation_type
    self.kernel_initializer = kernel_initializer

  def build(self, unused_input_shapes):
    """Implements build() for the layer."""
    if self.activation_type == "relu":
      activation = tf.nn.relu
    elif self.activation_type == "gelu":
      activation = gelu
    else:
      raise (ValueError("Unsupported activation type {}".format(
          self.activation_type)))
    self.inner_projection_layer = (
        tf_keras.layers.Dense(
            units=self.d_inner,
            activation=activation,
            kernel_initializer=self.kernel_initializer,
            name="layer_1"))
    self.output_projection_layer = (
        tf_keras.layers.Dense(
            units=self.d_model,
            kernel_initializer=self.kernel_initializer,
            name="layer_2"))
    self.output_dropout = tf_keras.layers.Dropout(
        rate=self.dropout, name="drop_2")
    self.output_layer_norm = (
        tf_keras.layers.LayerNormalization(
            name="LayerNorm", axis=-1, epsilon=1e-12))
    super(PositionwiseFF, self).build(unused_input_shapes)

  def call(self, inp):
    """Implements call() for the layer."""

    output = self.inner_projection_layer(inp)
    output = self.output_projection_layer(output)
    output = self.output_dropout(output)
    output = self.output_layer_norm(output + inp)
    return output


class EmbeddingLookup(tf_keras.layers.Layer):
  """Looks up words embeddings for id tensor."""

  def __init__(self, n_token, d_embed, initializer, **kwargs):
    super(EmbeddingLookup, self).__init__(**kwargs)
    self.n_token = n_token
    self.d_embed = d_embed
    self.initializer = initializer

  def build(self, unused_input_shapes):
    """Implements build() for the layer."""
    self.lookup_table = self.add_weight(
        "lookup_table",
        shape=[self.n_token, self.d_embed],
        initializer=self.initializer,
        dtype=self.dtype)

    super(EmbeddingLookup, self).build(unused_input_shapes)

  def call(self, inputs):
    return tf.nn.embedding_lookup(self.lookup_table, inputs)


class RelativeMultiheadAttention(tf_keras.layers.Layer):
  """Multi-head attention with relative embedding."""

  def __init__(self, d_model, n_head, d_head, dropout, dropout_att,
               kernel_initializer, **kwargs):
    super(RelativeMultiheadAttention, self).__init__(**kwargs)
    self.d_model = d_model
    self.n_head = n_head
    self.d_head = d_head
    self.dropout = dropout
    self.dropout_att = dropout_att
    self.initializer = kernel_initializer

  def build(self, unused_input_shapes):
    """Implements build() for the layer."""
    self.scale = 1.0 / (self.d_head**0.5)

    self.output_layer_norm = tf_keras.layers.LayerNormalization(
        name="LayerNorm", axis=-1, epsilon=1e-12)

    self.kh_projection_layer = self.add_weight(
        "k/kernel",
        shape=[self.d_model, self.n_head, self.d_head],
        initializer=self.initializer)
    self.vh_projection_layer = self.add_weight(
        "v/kernel",
        shape=[self.d_model, self.n_head, self.d_head],
        initializer=self.initializer)
    self.kr_projection_layer = self.add_weight(
        "r/kernel",
        shape=[self.d_model, self.n_head, self.d_head],
        initializer=self.initializer)
    self.qh_projection_layer = self.add_weight(
        "q/kernel",
        shape=[self.d_model, self.n_head, self.d_head],
        initializer=self.initializer)

    self.relative_attention_layer = RelativeAttention(
        dropout_att=self.dropout_att, scale=self.scale)

    self.proj_o = self.add_weight(
        "o/kernel",
        shape=[self.d_model, self.n_head, self.d_head],
        initializer=self.initializer)

    self.attention_dropout = tf_keras.layers.Dropout(rate=self.dropout)

    super(RelativeMultiheadAttention, self).build(unused_input_shapes)

  def call(self, h, g, r, r_w_bias, r_r_bias, seg_mat, r_s_bias, seg_embed,
           attn_mask_h, attn_mask_g, mems, target_mapping):
    """Implements call() for the layer."""

    if mems is not None and mems.shape.ndims > 1:
      cat = tf.concat([mems, h], 0)
    else:
      cat = h

    # content heads
    q_head_h = tf.einsum("ibh,hnd->ibnd", h, self.qh_projection_layer)
    k_head_h = tf.einsum("ibh,hnd->ibnd", cat, self.kh_projection_layer)
    v_head_h = tf.einsum("ibh,hnd->ibnd", cat, self.vh_projection_layer)

    # positional heads
    k_head_r = tf.einsum("ibh,hnd->ibnd", r, self.kr_projection_layer)

    # core attention ops
    attn_vec_h = self.relative_attention_layer(q_head_h, k_head_h, v_head_h,
                                               k_head_r, seg_embed, seg_mat,
                                               r_w_bias, r_r_bias, r_s_bias,
                                               attn_mask_h)

    # post processing
    output_h = tf.einsum("ibnd,hnd->ibh", attn_vec_h, self.proj_o)
    output_h = self.attention_dropout(output_h)
    output_h = self.output_layer_norm(output_h + h)

    output_g = None
    if g is not None:  # enable two-stream attention
      # g-stream
      q_head_g = tf.einsum("ibh,hnd->ibnd", g, self.qh_projection_layer)
      if target_mapping is not None:
        q_head_g = tf.einsum("mbnd,mlb->lbnd", q_head_g, target_mapping)
        attn_vec_g = self.relative_attention_layer(q_head_g, k_head_h, v_head_h,
                                                   k_head_r, seg_embed, seg_mat,
                                                   r_w_bias, r_r_bias, r_s_bias,
                                                   attn_mask_g)
        attn_vec_g = tf.einsum("lbnd,mlb->mbnd", attn_vec_g, target_mapping)

      else:
        attn_vec_g = self.relative_attention_layer(q_head_g, k_head_h, v_head_h,
                                                   k_head_r, seg_embed, seg_mat,
                                                   r_w_bias, r_r_bias, r_s_bias,
                                                   attn_mask_g)

      # post processing
      output_g = tf.einsum("ibnd,hnd->ibh", attn_vec_g, self.proj_o)
      output_g = self.attention_dropout(output_g)
      output_g = self.output_layer_norm(output_g + g)

    return (output_h, output_g)


class TransformerXLModel(tf_keras.layers.Layer):
  """Defines a Transformer-XL computation graph with additional support for XLNet."""

  def __init__(self,
               n_token,
               n_layer,
               d_model,
               n_head,
               d_head,
               d_inner,
               dropout,
               dropout_att,
               attn_type,
               bi_data,
               is_training,
               initializer,
               mem_len=None,
               same_length=False,
               clamp_len=-1,
               untie_r=False,
               use_tpu=True,
               reuse_len=None,
               ff_activation="relu",
               use_cls_mask=False,
               **kwargs):
    """Initializes TransformerXLModel.

    Args:
      n_token: int, the number of tokens in vocabulary.
      n_layer: int, the number of layers.
      d_model: int, the hidden size.
      n_head: int, the number of attention heads.
      d_head: int, the dimension size of each attention head.
      d_inner: int, the hidden size in feed-forward layers.
      dropout: float, dropout rate.
      dropout_att: float, dropout rate on attention probabilities.
      attn_type: str, "uni" or "bi".
      bi_data: bool, whether to use bidirectional input pipeline. Usually set to
        True during pretraining and False during finetuning.
      is_training: bool, whether in training mode.
      initializer: A tf initializer.
      mem_len: int, the number of tokens to cache.
      same_length: bool, whether to use the same attention length for each
        token.
      clamp_len: int, clamp all relative distances larger than clamp_len. -1
        means no clamping.
      untie_r: bool, whether to untie the biases in attention.
      use_tpu: bool, whether TPUs are used.
      reuse_len: int, the number of tokens in the currect batch to be cached and
        reused in the future.
      ff_activation: str, "relu" or "gelu".
      use_cls_mask: bool, whether to introduce cls mask.
      **kwargs: Other parameters.
    """

    super(TransformerXLModel, self).__init__(**kwargs)
    warnings.warn(
        "`TransformerXLModel` is deprecated, please use `XLNetBase` instead",
        DeprecationWarning, stacklevel=2)

    self.n_token = n_token
    self.initializer = initializer
    self.attn_type = attn_type
    self.n_layer = n_layer
    self.d_model = d_model
    self.n_head = n_head
    self.d_head = d_head
    self.d_inner = d_inner
    self.ff_activation = ff_activation
    self.untie_r = untie_r
    self.use_tpu = use_tpu
    self.dropout = dropout
    self.dropout_att = dropout_att

    self.mem_len = mem_len
    self.reuse_len = reuse_len
    self.bi_data = bi_data
    self.clamp_len = clamp_len
    self.same_length = same_length
    self.use_cls_mask = use_cls_mask

  def build(self, unused_input_shapes):
    """Implements build() for the layer."""
    self.tf_float = tf.float32

    self.embedding_lookup = EmbeddingLookup(
        n_token=self.n_token,
        d_embed=self.d_model,
        initializer=self.initializer,
        dtype=self.tf_float,
        name="word_embedding")

    self.h_dropout = tf_keras.layers.Dropout(rate=self.dropout)
    self.g_dropout = tf_keras.layers.Dropout(rate=self.dropout)

    if self.untie_r:
      self.r_w_bias = (
          self.add_weight(
              "r_w_bias",
              shape=[self.n_layer, self.n_head, self.d_head],
              dtype=self.tf_float,
              initializer=self.initializer))
      self.r_r_bias = (
          self.add_weight(
              "r_r_bias",
              shape=[self.n_layer, self.n_head, self.d_head],
              dtype=self.tf_float,
              initializer=self.initializer))
      self.r_s_bias = (
          self.add_weight(
              "r_s_bias",
              shape=[self.n_layer, self.n_head, self.d_head],
              dtype=self.tf_float,
              initializer=self.initializer))
    else:
      self.r_w_bias = (
          self.add_weight(
              "r_w_bias",
              shape=[self.n_head, self.d_head],
              dtype=self.tf_float,
              initializer=self.initializer))
      self.r_r_bias = (
          self.add_weight(
              "r_r_bias",
              shape=[self.n_head, self.d_head],
              dtype=self.tf_float,
              initializer=self.initializer))
      self.r_s_bias = (
          self.add_weight(
              "r_s_bias", [self.n_head, self.d_head],
              dtype=self.tf_float,
              initializer=self.initializer))

    self.seg_embed = self.add_weight(
        "seg_embed", [self.n_layer, 2, self.n_head, self.d_head],
        dtype=self.tf_float,
        initializer=self.initializer)

    self.mask_emb = self.add_weight(
        "mask_emb/mask_emb", shape=[1, 1, self.d_model], dtype=self.tf_float)

    self.emb_dropout = tf_keras.layers.Dropout(rate=self.dropout)
    self.fwd_position_embedding = RelativePositionEncoding(self.d_model)
    self.bwd_position_embedding = RelativePositionEncoding(self.d_model)

    self.rel_multihead_layers = []
    self.h_positionwise_ffn_layers = []
    for i in range(self.n_layer):
      self.rel_multihead_layers.append(
          RelativeMultiheadAttention(
              d_model=self.d_model,
              dropout=self.dropout,
              n_head=self.n_head,
              d_head=self.d_head,
              dropout_att=self.dropout_att,
              kernel_initializer=self.initializer,
              name="layer_%d/rel_attn" % (i)))
      self.h_positionwise_ffn_layers.append(
          PositionwiseFF(
              d_model=self.d_model,
              d_inner=self.d_inner,
              dropout=self.dropout,
              kernel_initializer=self.initializer,
              activation_type=self.ff_activation,
              name="layer_%d/ff" % (i)))

    self.output_dropout = tf_keras.layers.Dropout(rate=self.dropout)

    super(TransformerXLModel, self).build(unused_input_shapes)

  def __call__(self,
               inp_k,
               seg_id=None,
               input_mask=None,
               mems=None,
               perm_mask=None,
               target_mapping=None,
               inp_q=None,
               **kwargs):
    # Uses dict to feed inputs into call() in order to keep mems as a python
    # list.
    inputs = {
        "inp_k": inp_k,
        "seg_id": seg_id,
        "input_mask": input_mask,
        "mems": mems,
        "perm_mask": perm_mask,
        "target_mapping": target_mapping,
        "inp_q": inp_q
    }
    return super(TransformerXLModel, self).__call__(inputs, **kwargs)

  def call(self, inputs):
    """Implements call() for the layer."""
    inp_k = inputs["inp_k"]
    seg_id = inputs["seg_id"]
    input_mask = inputs["input_mask"]
    mems = inputs["mems"]
    perm_mask = inputs["perm_mask"]
    target_mapping = inputs["target_mapping"]
    inp_q = inputs["inp_q"]

    new_mems = []

    bsz = tf.shape(inp_k)[1]

    qlen = inp_k.shape.as_list()[0]

    mlen = mems[0].shape.as_list()[0] if mems is not None else 0
    klen = mlen + qlen

    ##### Attention mask
    # causal attention mask
    if self.attn_type == "uni":
      attn_mask = _create_mask(qlen, mlen, self.tf_float, self.same_length)
      # pylint: enable=protected-access
      attn_mask = attn_mask[:, :, None, None]
    elif self.attn_type == "bi":
      attn_mask = None
    else:
      raise ValueError("Unsupported attention type: {}".format(self.attn_type))

    # data mask: input mask & perm mask
    if input_mask is not None and perm_mask is not None:
      data_mask = input_mask[None] + perm_mask

    elif input_mask is not None and perm_mask is None:
      data_mask = input_mask[None]
    elif input_mask is None and perm_mask is not None:
      data_mask = perm_mask
    else:
      data_mask = None

    if data_mask is not None:
      # all mems can be attended to
      mems_mask = tf.zeros([tf.shape(data_mask)[0], mlen, bsz],
                           dtype=self.tf_float)
      data_mask = tf.concat([mems_mask, data_mask], 1)
      if attn_mask is None:
        attn_mask = data_mask[:, :, :, None]
      else:
        attn_mask += data_mask[:, :, :, None]

    if attn_mask is not None:
      attn_mask = tf.cast(attn_mask > 0, dtype=self.tf_float)

    if attn_mask is not None:
      non_tgt_mask = -tf.eye(qlen, dtype=self.tf_float)
      non_tgt_mask = tf.concat(
          [tf.zeros([qlen, mlen], dtype=self.tf_float), non_tgt_mask], axis=-1)
      non_tgt_mask = tf.cast(
          (attn_mask + non_tgt_mask[:, :, None, None]) > 0, dtype=self.tf_float)
    else:
      non_tgt_mask = None

    word_emb_k = self.embedding_lookup(inp_k)

    if inp_q is not None:
      if target_mapping is not None:
        word_emb_q = tf.tile(self.mask_emb,
                             [tf.shape(target_mapping)[0], bsz, 1])
      else:
        inp_q_ext = inp_q[:, :, None]
        word_emb_q = inp_q_ext * self.mask_emb + (1 - inp_q_ext) * word_emb_k

    output_h = self.h_dropout(word_emb_k)
    output_g = None
    if inp_q is not None:
      output_g = self.g_dropout(word_emb_q)

    ##### Segment embedding
    if seg_id is not None:

      # Convert `seg_id` to one-hot `seg_mat`

      mem_pad = tf.zeros([mlen, bsz], dtype=tf.int32)

      cat_id = tf.concat([mem_pad, seg_id], 0)

      if self.use_cls_mask:
        # `1` indicates not in the same segment [qlen x klen x bsz]
        # seg_id: [qlen x bsz] & cat_id: [klen x bsz]
        cls_mat = tf.logical_or(
            tf.equal(seg_id, tf.constant([data_utils.SEG_ID_CLS]))[:, None],
            tf.equal(cat_id, tf.constant([data_utils.SEG_ID_CLS]))[None, :])
        seg_mat = tf.equal(seg_id[:, None], cat_id[None, :])
        seg_mat = tf.logical_or(cls_mat, seg_mat)
      else:
        seg_mat = tf.logical_not(tf.equal(seg_id[:, None], cat_id[None, :]))
    else:
      seg_mat = None

    dtype = self.tf_float
    freq_seq = tf.range(0, self.d_model, 2.0)
    if dtype is not None and dtype != tf.float32:
      freq_seq = tf.cast(freq_seq, dtype=self.dtype)

    if self.attn_type == "bi":
      beg, end = klen, -qlen
    elif self.attn_type == "uni":
      beg, end = klen, -1
    else:
      raise ValueError("Unknown `attn_type` {}.".format(self.attn_type))

    if self.bi_data:
      fwd_pos_seq = tf.range(beg, end, -1.0)
      bwd_pos_seq = tf.range(-beg, -end, 1.0)

      if dtype is not None and dtype != tf.float32:
        fwd_pos_seq = tf.cast(fwd_pos_seq, dtype=dtype)
        bwd_pos_seq = tf.cast(bwd_pos_seq, dtype=dtype)

      if self.clamp_len > 0:
        fwd_pos_seq = tf.clip_by_value(fwd_pos_seq, -self.clamp_len,
                                       self.clamp_len)
        bwd_pos_seq = tf.clip_by_value(bwd_pos_seq, -self.clamp_len,
                                       self.clamp_len)

      if bsz is not None:
        fwd_pos_emb = self.fwd_position_embedding(fwd_pos_seq, bsz // 2)
        bwd_pos_emb = self.bwd_position_embedding(bwd_pos_seq, bsz // 2)
      else:
        fwd_pos_emb = self.fwd_position_embedding(fwd_pos_seq, None)
        bwd_pos_emb = self.bwd_position_embedding(bwd_pos_seq, None)

      pos_emb = tf.concat([fwd_pos_emb, bwd_pos_emb], axis=1)
    else:
      fwd_pos_seq = tf.range(beg, end, -1.0)
      if dtype is not None and dtype != tf.float32:
        fwd_pos_seq = tf.cast(fwd_pos_seq, dtype=dtype)
      if self.clamp_len > 0:
        fwd_pos_seq = tf.clip_by_value(fwd_pos_seq, -self.clamp_len,
                                       self.lamp_len)

      pos_emb = self.fwd_position_embedding(fwd_pos_seq, bsz)

    pos_emb = self.emb_dropout(pos_emb)

    if mems is None:
      mems = [None] * self.n_layer
    for i in range(self.n_layer):
      # cache new mems
      new_mems.append(
          _cache_mem(output_h, mems[i], self.mem_len, self.reuse_len))
      # pylint: enable=protected-access

      # segment bias
      if seg_id is None:
        r_s_bias_i = None
        seg_embed_i = None
      else:
        r_s_bias_i = self.r_s_bias if not self.untie_r else self.r_s_bias[i]
        seg_embed_i = self.seg_embed[i]

      ffn_layer = self.h_positionwise_ffn_layers[i]
      attention_layer = self.rel_multihead_layers[i]
      output_h, output_g = attention_layer(
          h=output_h,
          g=output_g,
          r=pos_emb,
          r_w_bias=self.r_w_bias if not self.untie_r else self.r_w_bias[i],
          r_r_bias=self.r_r_bias if not self.untie_r else self.r_r_bias[i],
          seg_mat=seg_mat,
          r_s_bias=r_s_bias_i,
          seg_embed=seg_embed_i,
          attn_mask_h=non_tgt_mask,
          attn_mask_g=attn_mask,
          mems=mems[i],
          target_mapping=target_mapping)
      output_h = ffn_layer(output_h)
      if output_g is not None:
        output_g = ffn_layer(output_g)

    if inp_q is not None:
      output = output_g
    else:
      output = output_h

    return output, new_mems, None


class PretrainingXLNetModel(tf_keras.Model):
  """XLNet keras model combined with pretraining LM loss layer.

  See the original paper: https://arxiv.org/pdf/1906.08237.pdf

  """

  def __init__(self, use_proj, xlnet_config, run_config, use_legacy_mask=True,
               **kwargs):
    super(PretrainingXLNetModel, self).__init__(**kwargs)
    self.run_config = run_config
    self.initializer = _get_initializer(run_config)
    self.xlnet_config = copy.deepcopy(xlnet_config)
    self._use_legacy_mask = use_legacy_mask

    self.xlnet_model = networks.XLNetBase(
        vocab_size=self.xlnet_config.n_token,
        initializer=self.initializer,
        attention_type="bi",
        num_layers=self.xlnet_config.n_layer,
        hidden_size=self.xlnet_config.d_model,
        num_attention_heads=self.xlnet_config.n_head,
        head_size=self.xlnet_config.d_head,
        inner_size=self.xlnet_config.d_inner,
        two_stream=True,
        tie_attention_biases=not self.xlnet_config.untie_r,
        inner_activation=self.xlnet_config.ff_activation,
        dropout_rate=self.run_config.dropout,
        attention_dropout_rate=self.run_config.dropout_att,
        memory_length=self.run_config.mem_len,
        reuse_length=self.run_config.reuse_len,
        bi_data=self.run_config.bi_data,
        clamp_length=self.run_config.clamp_len,
        use_cls_mask=self.run_config.use_cls_mask,
        name="xlnet_model")

    self.lmloss_layer = LMLossLayer(
        vocab_size=self.xlnet_config.n_token,
        hidden_size=self.xlnet_config.d_model,
        initializer=self.initializer,
        tie_weight=True,
        bi_data=self.run_config.bi_data,
        use_one_hot=self.run_config.use_tpu,
        use_proj=use_proj,
        name="lm_loss")

  def call(self, features):
    """Implements call() for the layer."""

    input_ids = features["input_ids"]
    masked_tokens = features["input_q"]
    seg_ids = features["seg_id"]
    if self._use_legacy_mask:
      # Legacy input mask assumes `real` values are 0 and `padding`
      # values are 1.
      perm_mask = 1 - features["perm_mask"]
    else:
      perm_mask = features["perm_mask"]
    target_mapping = features["target_mapping"]

    # target for LM loss
    target = features["target"]

    # target mask for LM loss
    tgt_mask = features["target_mask"]

    mems = features.get("mems", None)

    model_output, self.new_mems = self.xlnet_model(
        input_ids=input_ids,
        segment_ids=seg_ids,
        input_mask=None,
        state=mems,
        permutation_mask=perm_mask,
        target_mapping=target_mapping,
        masked_tokens=masked_tokens)
    lm_loss, _ = self.lmloss_layer(
        hidden=model_output,
        target=target,
        lookup_table=self.xlnet_model.get_embedding_lookup_table(),
        target_mask=tgt_mask)
    self.add_loss(lm_loss)
    return self.new_mems, model_output


class ClassificationXLNetModel(tf_keras.Model):
  """XLNet keras model combined with classification loss layer.

  See the original paper: https://arxiv.org/pdf/1906.08237.pdf

  """

  def __init__(self, xlnet_config, run_config, n_class, summary_type,
               use_legacy_mask=True, **kwargs):
    super(ClassificationXLNetModel, self).__init__(**kwargs)
    warnings.warn(
        "`ClassificationXLNetModel` is deprecated, please use `XLNetClassifier`"
        "instead.", DeprecationWarning, stacklevel=2)
    self.run_config = run_config
    self.initializer = _get_initializer(run_config)
    self.xlnet_config = copy.deepcopy(xlnet_config)
    self._use_legacy_mask = use_legacy_mask

    self.xlnet_model = networks.XLNetBase(
        vocab_size=self.xlnet_config.n_token,
        initializer=self.initializer,
        attention_type="bi",
        num_layers=self.xlnet_config.n_layer,
        hidden_size=self.xlnet_config.d_model,
        num_attention_heads=self.xlnet_config.n_head,
        head_size=self.xlnet_config.d_head,
        inner_size=self.xlnet_config.d_inner,
        two_stream=False,
        tie_attention_biases=not self.xlnet_config.untie_r,
        inner_activation=self.xlnet_config.ff_activation,
        dropout_rate=self.run_config.dropout,
        attention_dropout_rate=self.run_config.dropout_att,
        memory_length=self.run_config.mem_len,
        reuse_length=self.run_config.reuse_len,
        bi_data=self.run_config.bi_data,
        clamp_length=self.run_config.clamp_len,
        use_cls_mask=False,
        name="xlnet_model")

    self.summarization_layer = Summarization(
        hidden_size=self.xlnet_config.d_model,
        num_attention_heads=self.xlnet_config.n_head,
        head_size=self.xlnet_config.d_head,
        dropout_rate=self.run_config.dropout,
        attention_dropout_rate=self.run_config.dropout_att,
        initializer=self.initializer,
        use_proj=True,
        summary_type=summary_type,
        name="sequence_summary")

    self.cl_loss_layer = ClassificationLossLayer(
        n_class=n_class, initializer=self.initializer, name="classification")

  def call(self, features):
    """Implements call() for the layer."""
    batch_size_per_core = tf.shape(features["input_ids"])[0]

    input_ids = features["input_ids"]
    segment_ids = features["segment_ids"]
    if self._use_legacy_mask:
      # Legacy input mask assumes `real` values are 0 and `padding`
      # values are 1.
      input_mask = 1 - features["input_mask"]
    else:
      input_mask = features["input_mask"]

    label = tf.reshape(features["label_ids"], [batch_size_per_core])

    mems = features.get("mems", None)

    attention_output, new_mems = (
        self.xlnet_model(input_ids, segment_ids, input_mask, mems))

    summary = self.summarization_layer(attention_output)
    per_example_loss, logits = self.cl_loss_layer(hidden=summary, labels=label)
    self.add_loss(tf_keras.backend.mean(per_example_loss))
    return new_mems, logits


class LMLossLayer(tf_keras.layers.Layer):
  """Layer computing cross entropy loss for language modeling."""

  def __init__(self,
               vocab_size,
               hidden_size,
               initializer,
               tie_weight=False,
               bi_data=True,
               use_one_hot=False,
               use_proj=False,
               **kwargs):
    """Constructs LMLoss layer.

    Args:
      vocab_size: Number of tokens in vocabulary.
      hidden_size: The dimension of model hidden state.
      initializer: Initializer used for parameters.
      tie_weight: Whether to share weights between embedding lookup layer and
        next-token prediction layer.
      bi_data: Whether to use bidirectional input pipeline. Usually set to True
        during pretraining and False during finetuning.
      use_one_hot: bool, whether to use one hot encodings. This should be used
        when TPUs are used.
      use_proj: bool, whether to add a projection layer before LM prediction.
      **kwargs: Other parameters.
    """
    super(LMLossLayer, self).__init__(**kwargs)
    self.vocab_size = vocab_size
    self.hidden_size = hidden_size
    self.initializer = initializer

    self.tie_weight = tie_weight
    self.bi_data = bi_data
    self.use_one_hot = use_one_hot
    self.use_proj = use_proj

  def build(self, unused_input_shapes):
    """Implements build() for the layer."""
    if self.use_proj:
      self.proj_layer = tf_keras.layers.Dense(
          units=self.hidden_size,
          kernel_initializer=self.initializer,
          activation=gelu,
          name="lm_projection/dense")
      self.proj_layer_norm = tf_keras.layers.LayerNormalization(
          axis=-1, epsilon=1e-12, name="lm_projection/LayerNorm")
    if not self.tie_weight:
      self.softmax_w = self.add_weight(
          "weight",
          shape=[self.vocab_size, self.hidden_size],
          initializer=self.initializer)

    self.softmax_b = self.add_weight(
        "bias", shape=[self.vocab_size], initializer=tf.zeros_initializer())

    super(LMLossLayer, self).build(unused_input_shapes)

  def call(self, hidden, target, lookup_table, target_mask):
    """Implements call() for the layer."""
    if self.use_proj:
      hidden = self.proj_layer_norm(self.proj_layer(hidden))
    if self.tie_weight:
      logits = tf.einsum("ibd,nd->ibn", hidden, lookup_table) + self.softmax_b
    else:
      logits = tf.einsum("ibd,nd->ibn", hidden, self.softmax_w) + self.softmax_b

    if self.use_one_hot:
      one_hot_target = tf.one_hot(target, self.vocab_size, dtype=logits.dtype)
      loss = -tf.reduce_sum(tf.nn.log_softmax(logits) * one_hot_target, -1)
    else:
      loss = tf.nn.sparse_softmax_cross_entropy_with_logits(
          labels=target, logits=logits)

    total_loss = tf.reduce_sum(loss * target_mask) / tf.reduce_sum(target_mask)

    return total_loss, logits


class Summarization(tf_keras.layers.Layer):
  """The layer to pool the output from XLNet model into a vector."""

  def __init__(self,
               hidden_size,
               num_attention_heads,
               head_size,
               dropout_rate,
               attention_dropout_rate,
               initializer,
               use_proj=True,
               summary_type="last",
               **kwargs):
    """Constructs Summarization layer.

    Args:
      hidden_size: int, the dimension of model hidden state.
      num_attention_heads: int, the number of attention heads.
      head_size: int, the dimension size of each attention head.
      dropout_rate: float, dropout rate.
      attention_dropout_rate: float, dropout rate on attention probabilities.
      initializer: Initializer used for parameters.
      use_proj: bool, whether to use projection layer for summarization.
      summary_type: Method used to summarize a sequence into a compact vector.
      **kwargs: Other parameters.
    """
    super(Summarization, self).__init__(**kwargs)
    self.hidden_size = hidden_size
    self.num_attention_heads = num_attention_heads
    self.head_size = head_size
    self.initializer = initializer

    self.dropout_rate = dropout_rate
    self.attention_dropout_rate = attention_dropout_rate
    self.use_proj = use_proj
    self.summary_type = summary_type

  def build(self, unused_input_shapes):
    """Implements build() for the layer."""
    if self.use_proj:
      self.proj_layer = tf_keras.layers.Dense(
          units=self.hidden_size,
          kernel_initializer=self.initializer,
          activation=tf.nn.tanh,
          name="summary")
    self.dropout_layer = tf_keras.layers.Dropout(rate=self.dropout_rate)

    super(Summarization, self).build(unused_input_shapes)

  def call(self, inputs):
    """Implements call() for the layer."""
    if self.summary_type == "last":
      summary = inputs[:, -1, :]
    elif self.summary_type == "first":
      summary = inputs[:, 0, :]
    else:
      raise ValueError("Invalid summary type provided: %s" % self.summary_type)
    if self.use_proj:
      summary = self.proj_layer(summary)
    summary = self.dropout_layer(summary)
    return summary


class ClassificationLossLayer(tf_keras.layers.Layer):
  """Layer computing cross entropy loss for classification task."""

  def __init__(self, n_class, initializer, **kwargs):
    """Constructs Summarization layer.

    Args:
      n_class: Number of tokens in vocabulary.
      initializer: Initializer used for parameters.
      **kwargs: Other parameters.
    """
    super(ClassificationLossLayer, self).__init__(**kwargs)

    self.n_class = n_class
    self.initializer = initializer

  def build(self, unused_input_shapes):
    """Implements build() for the layer."""
    self.proj_layer = tf_keras.layers.Dense(
        units=self.n_class, kernel_initializer=self.initializer, name="logit")

    super(ClassificationLossLayer, self).build(unused_input_shapes)

  def call(self, hidden, labels):
    """Implements call() for the layer."""

    logits = self.proj_layer(hidden)
    one_hot_target = tf.one_hot(labels, self.n_class, dtype=hidden.dtype)  # pytype: disable=attribute-error
    loss = -tf.reduce_sum(tf.nn.log_softmax(logits) * one_hot_target, -1)

    return loss, logits


class QAXLNetModel(tf_keras.Model):
  """XLNet keras model combined with question answering loss layer.

  See the original paper: https://arxiv.org/pdf/1906.08237.pdf

  """

  def __init__(self, xlnet_config, run_config, start_n_top, end_n_top,
               use_legacy_mask=True, **kwargs):
    super(QAXLNetModel, self).__init__(**kwargs)
    warnings.warn(
        "`QAXLNetModel` is deprecated, please use `XLNetSpanLabeler` instead.",
        DeprecationWarning, stacklevel=2)
    self.run_config = run_config
    self.initializer = _get_initializer(run_config)
    self.xlnet_config = copy.deepcopy(xlnet_config)
    self._use_legacy_mask = use_legacy_mask

    self.xlnet_model = networks.XLNetBase(
        vocab_size=self.xlnet_config.n_token,
        initializer=self.initializer,
        attention_type="bi",
        num_layers=self.xlnet_config.n_layer,
        hidden_size=self.xlnet_config.d_model,
        num_attention_heads=self.xlnet_config.n_head,
        head_size=self.xlnet_config.d_head,
        inner_size=self.xlnet_config.d_inner,
        tie_attention_biases=not self.xlnet_config.untie_r,
        inner_activation=self.xlnet_config.ff_activation,
        dropout_rate=self.run_config.dropout,
        attention_dropout_rate=self.run_config.dropout_att,
        two_stream=False,
        memory_length=self.run_config.mem_len,
        reuse_length=self.run_config.reuse_len,
        bi_data=self.run_config.bi_data,
        clamp_length=self.run_config.clamp_len,
        use_cls_mask=False,
        name="xlnet_model")

    self.qa_loss_layer = QALossLayer(
        hidden_size=self.xlnet_config.d_model,
        start_n_top=start_n_top,
        end_n_top=end_n_top,
        initializer=self.initializer,
        dropout_rate=self.run_config.dropout,
        name="qa_loss_layer")

  def call(self, features, training=False):
    """Implements call() for the layer."""

    input_ids = features["input_ids"]
    segment_ids = features["segment_ids"]
    if self._use_legacy_mask:
      # Legacy input mask assumes `real` values are 0 and `padding`
      # values are 1.
      input_mask = 1 - features["input_mask"]
    else:
      input_mask = features["input_mask"]

    cls_index = tf.reshape(features["cls_index"], [-1])
    p_mask = features["p_mask"]

    attention_output, new_mems = (
        self.xlnet_model(input_ids, segment_ids, input_mask))

    if training:
      loss, logits = self.qa_loss_layer(
          hidden=attention_output,
          p_mask=p_mask,
          cls_index=cls_index,
          start_positions=features["start_positions"],
          end_positions=features["end_positions"],
          is_impossible=features["is_impossible"])
      self.add_loss(loss)
      return new_mems, logits
    else:
      results = self.qa_loss_layer(
          hidden=attention_output, p_mask=p_mask, cls_index=cls_index)
      return results


class QALossLayer(tf_keras.layers.Layer):
  """Layer computing position and regression loss for question answering task."""

  def __init__(self, hidden_size, start_n_top, end_n_top, initializer,
               dropout_rate, **kwargs):
    """Constructs Summarization layer.

    Args:
      hidden_size: Int, the hidden size.
      start_n_top: Beam size for span start.
      end_n_top: Beam size for span end.
      initializer: Initializer used for parameters.
      dropout_rate: float, dropout rate.
      **kwargs: Other parameters.
    """
    super(QALossLayer, self).__init__(**kwargs)
    self.hidden_size = hidden_size
    self.start_n_top = start_n_top
    self.end_n_top = end_n_top
    self.initializer = initializer
    self.dropout_rate = dropout_rate

  def build(self, unused_input_shapes):
    """Implements build() for the layer."""
    self.start_logits_proj_layer = tf_keras.layers.Dense(
        units=1, kernel_initializer=self.initializer, name="start_logits/dense")
    self.end_logits_proj_layer0 = tf_keras.layers.Dense(
        units=self.hidden_size,
        kernel_initializer=self.initializer,
        activation=tf.nn.tanh,
        name="end_logits/dense_0")
    self.end_logits_proj_layer1 = tf_keras.layers.Dense(
        units=1, kernel_initializer=self.initializer, name="end_logits/dense_1")
    self.end_logits_layer_norm = tf_keras.layers.LayerNormalization(
        axis=-1, epsilon=1e-12, name="end_logits/LayerNorm")
    self.answer_class_proj_layer0 = tf_keras.layers.Dense(
        units=self.hidden_size,
        kernel_initializer=self.initializer,
        activation=tf.nn.tanh,
        name="answer_class/dense_0")
    self.answer_class_proj_layer1 = tf_keras.layers.Dense(
        units=1,
        kernel_initializer=self.initializer,
        use_bias=False,
        name="answer_class/dense_1")
    self.ans_feature_dropout = tf_keras.layers.Dropout(rate=self.dropout_rate)
    super(QALossLayer, self).build(unused_input_shapes)

  def __call__(self, hidden, p_mask, cls_index, **kwargs):
    return super(QALossLayer, self).__call__(
        (hidden, p_mask, cls_index, kwargs))

  def call(self, inputs, training=False):
    """Implements call() for the layer."""
    hidden, p_mask, cls_index, kwargs = inputs
    return_dict = {}
    seq_len = tf.shape(hidden)[1]

    hidden = tf.transpose(hidden, [1, 0, 2])
    start_logits = self.start_logits_proj_layer(hidden)
    start_logits = tf.transpose(tf.squeeze(start_logits, -1), [1, 0])
    start_logits_masked = start_logits * (1 - p_mask) - 1e30 * p_mask
    start_log_probs = tf.nn.log_softmax(start_logits_masked, -1)
    if training:
      start_positions = kwargs["start_positions"]
      end_positions = kwargs["end_positions"]
      is_impossible = kwargs["is_impossible"]
      start_positions = tf.reshape(start_positions, [-1])
      start_index = tf.one_hot(
          start_positions, depth=seq_len, axis=-1, dtype=tf.float32)
      start_features = tf.einsum("lbh,bl->bh", hidden, start_index)
      start_features = tf.tile(start_features[None], [seq_len, 1, 1])
      end_logits = self.end_logits_proj_layer0(
          tf.concat([hidden, start_features], axis=-1))

      end_logits = self.end_logits_layer_norm(end_logits)

      end_logits = self.end_logits_proj_layer1(end_logits)
      end_logits = tf.transpose(tf.squeeze(end_logits, -1), [1, 0])
      end_logits_masked = end_logits * (1 - p_mask) - 1e30 * p_mask
      end_log_probs = tf.nn.log_softmax(end_logits_masked, -1)
    else:
      # during inference, compute the end logits based on beam search

      start_top_log_probs, start_top_index = tf.nn.top_k(
          start_log_probs, k=self.start_n_top)
      start_index = tf.one_hot(
          start_top_index, depth=seq_len, axis=-1, dtype=tf.float32)
      start_features = tf.einsum("lbh,bkl->bkh", hidden, start_index)
      end_input = tf.tile(hidden[:, :, None], [1, 1, self.start_n_top, 1])
      start_features = tf.tile(start_features[None], [seq_len, 1, 1, 1])
      end_input = tf.concat([end_input, start_features], axis=-1)
      end_logits = self.end_logits_proj_layer0(end_input)
      end_logits = tf.reshape(end_logits, [seq_len, -1, self.hidden_size])
      end_logits = self.end_logits_layer_norm(end_logits)

      end_logits = tf.reshape(end_logits,
                              [seq_len, -1, self.start_n_top, self.hidden_size])

      end_logits = self.end_logits_proj_layer1(end_logits)
      end_logits = tf.reshape(end_logits, [seq_len, -1, self.start_n_top])
      end_logits = tf.transpose(end_logits, [1, 2, 0])
      end_logits_masked = end_logits * (
          1 - p_mask[:, None]) - 1e30 * p_mask[:, None]
      end_log_probs = tf.nn.log_softmax(end_logits_masked, -1)
      end_top_log_probs, end_top_index = tf.nn.top_k(
          end_log_probs, k=self.end_n_top)
      end_top_log_probs = tf.reshape(end_top_log_probs,
                                     [-1, self.start_n_top * self.end_n_top])
      end_top_index = tf.reshape(end_top_index,
                                 [-1, self.start_n_top * self.end_n_top])

    if training:
      return_dict["start_log_probs"] = start_log_probs
      return_dict["end_log_probs"] = end_log_probs
    else:
      return_dict["start_top_log_probs"] = start_top_log_probs
      return_dict["start_top_index"] = start_top_index
      return_dict["end_top_log_probs"] = end_top_log_probs
      return_dict["end_top_index"] = end_top_index
    # an additional layer to predict answerability

    # get the representation of CLS
    cls_index = tf.one_hot(cls_index, seq_len, axis=-1, dtype=tf.float32)
    cls_feature = tf.einsum("lbh,bl->bh", hidden, cls_index)

    # get the representation of START
    start_p = tf.nn.softmax(start_logits_masked, axis=-1, name="softmax_start")
    start_feature = tf.einsum("lbh,bl->bh", hidden, start_p)

    ans_feature = tf.concat([start_feature, cls_feature], -1)
    ans_feature = self.answer_class_proj_layer0(ans_feature)
    ans_feature = self.ans_feature_dropout(ans_feature)
    cls_logits = self.answer_class_proj_layer1(ans_feature)
    cls_logits = tf.squeeze(cls_logits, -1)
    return_dict["cls_logits"] = cls_logits

    if not training:
      return return_dict

    def compute_loss(log_probs, positions):
      one_hot_positions = tf.one_hot(positions, depth=seq_len, dtype=tf.float32)

      loss = -tf.reduce_sum(one_hot_positions * log_probs, axis=-1)
      loss = tf.reduce_mean(loss)
      return loss

    start_loss = compute_loss(start_log_probs, start_positions)
    end_loss = compute_loss(end_log_probs, end_positions)

    total_loss = (start_loss + end_loss) * 0.5

    is_impossible = tf.reshape(is_impossible, [-1])
    regression_loss = tf.nn.sigmoid_cross_entropy_with_logits(
        labels=is_impossible, logits=cls_logits)
    regression_loss = tf.reduce_mean(regression_loss)

    total_loss += regression_loss * 0.5
    return total_loss, cls_logits