Spaces:
Sleeping
Sleeping
File size: 11,303 Bytes
5672777 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 |
# Copyright 2023 The TensorFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Progressive Trainer implementation.
The trainer implements the Orbit `StandardTrainable` and
`StandardEvaluable` interfaces. Trainers inside this project should be
interchangable and independent on model architectures and tasks.
"""
import dataclasses
import os
from typing import Any, Optional
# Import libraries
from absl import logging
import gin
import orbit
import tensorflow as tf, tf_keras
from official.core import base_task
from official.core import base_trainer as trainer_lib
from official.core import config_definitions
from official.modeling.fast_training.progressive import policies
from official.modeling.fast_training.progressive import utils
ExperimentConfig = config_definitions.ExperimentConfig
@dataclasses.dataclass
class ProgressiveTrainerConfig(config_definitions.TrainerConfig):
"""Configuration for progressive trainer.
Attributes:
progressive: A task-specific config. Users can subclass ProgressiveConfig
and define any task-specific settings in their subclass.
export_checkpoint: A bool. Whether to export checkpoints in non-progressive
manner (without the volatiles wrapper) such that your down-stream tasks
can load checkpoints from a progressive trainer as if it is a regular
checkpoint.
export_checkpoint_interval: A bool. The number of steps between exporting
checkpoints. If None (by default), will use the same value as
TrainerConfig.checkpoint_interval.
export_max_to_keep: The maximum number of exported checkpoints to keep.
If None (by default), will use the same value as
TrainerConfig.max_to_keep.
export_only_final_stage_ckpt: A bool. Whether to just export checkpoints
during the final progressive training stage. In other words, whether to
not export small, partial models. In many cases, it is not meaningful to
finetune a small, partial model in down-stream tasks.
"""
progressive: Optional[policies.ProgressiveConfig] = None
export_checkpoint: bool = True
export_checkpoint_interval: Optional[int] = None
export_max_to_keep: Optional[int] = None
export_only_final_stage_ckpt: bool = True
@gin.configurable
class ProgressiveTrainer(trainer_lib.Trainer):
"""Implements the progressive trainer shared for TensorFlow models."""
def __init__(
self,
config: ExperimentConfig,
prog_task: base_task.Task, # also implemented ProgressivePolicy.
ckpt_dir: str = '',
train: bool = True,
evaluate: bool = True,
checkpoint_exporter: Any = None):
"""Initialize common trainer for TensorFlow models.
Args:
config: An `ExperimentConfig` instance specifying experiment config.
prog_task: An instance both implemented policies.ProgressivePolicy and
base_task.Task.
ckpt_dir: Checkpoint directory.
train: bool, whether or not this trainer will be used for training.
default to True.
evaluate: bool, whether or not this trainer will be used for evaluation.
default to True.
checkpoint_exporter: an object that has the `maybe_export_checkpoint`
interface.
"""
# Gets the current distribution strategy. If not inside any strategy scope,
# it gets a single-replica no-op strategy.
self._strategy = tf.distribute.get_strategy()
self._config = config
self._runtime_options = trainer_lib.get_runtime_options(config)
self._task = prog_task
# Directory for non-progressive checkpoint
self._export_ckpt_dir = os.path.join(ckpt_dir, 'exported_ckpts')
tf.io.gfile.makedirs(self._export_ckpt_dir)
self._export_ckpt_manager = None
# Receive other checkpoint export, e.g, best checkpoint exporter.
# TODO(lehou): unify the checkpoint exporting logic, although the default
# setting does not use checkpoint_exporter.
self._checkpoint_exporter = checkpoint_exporter
self._global_step = orbit.utils.create_global_step()
self._checkpoint = utils.CheckpointWithHooks(
before_load_hook=self._update_pt_stage_from_ckpt,
global_step=self.global_step,
**self._task.cur_checkpoint_items)
self._train_loss = tf_keras.metrics.Mean('training_loss', dtype=tf.float32)
self._validation_loss = tf_keras.metrics.Mean(
'validation_loss', dtype=tf.float32)
self._train_metrics = self.task.build_metrics(
training=True) + self.model.metrics
self._validation_metrics = self.task.build_metrics(
training=False) + self.model.metrics
if train:
orbit.StandardTrainer.__init__(
self,
None, # Manage train_dataset by ourselves, not by StandardTrainer.
options=orbit.StandardTrainerOptions(
use_tf_while_loop=config.trainer.train_tf_while_loop,
use_tf_function=config.trainer.train_tf_function))
if evaluate:
orbit.StandardEvaluator.__init__(
self,
None, # Manage train_dataset by ourselves, not by StandardEvaluator.
options=orbit.StandardEvaluatorOptions(
use_tf_function=config.trainer.eval_tf_function))
@property
def model(self):
return self._task.cur_model
@property
def optimizer(self):
return self._task.cur_optimizer
# override
@property
def train_dataset(self):
"""Overriding StandardTrainer.train_dataset."""
return self._task.cur_train_dataset
# override
@train_dataset.setter
def train_dataset(self, _):
raise SyntaxError('Please do not set train_dataset. Progressive training '
'relies on progressive policy to manager train dataset.')
# override
@property
def eval_dataset(self):
"""Overriding StandardEvaluator.eval_dataset."""
return self._task.cur_eval_dataset
# override
@eval_dataset.setter
def eval_dataset(self, _):
raise SyntaxError('Please do not set eval_dataset. Progressive training '
'relies on progressive policy to manager eval dataset.')
def train_loop_end(self):
"""See base class."""
logs = {}
for metric in self.train_metrics + [self.train_loss]:
logs[metric.name] = metric.result()
metric.reset_states()
if callable(self.optimizer.learning_rate):
logs['learning_rate'] = self.optimizer.learning_rate(
self.optimizer.iterations)
else:
logs['learning_rate'] = self.optimizer.learning_rate
self._maybe_export_non_progressive_checkpoint(self._export_ckpt_dir)
if self._task.is_stage_advancing(self.global_step.numpy()):
old_train_dataset = self.train_dataset
# Update progressive properties
self._task.update_pt_stage(self.global_step.numpy())
# Setting `self._train_loop_fn` and `self._eval_loop_fn` to None will
# rebuild the train and eval functions with the updated model.
self._train_loop_fn = None
self._eval_loop_fn = None
if self.train_dataset != old_train_dataset:
# Setting `self._train_iter` to None will rebuild the dataset iterator.
self._train_iter = None
# Setting `self._export_ckpt_manager` to None will rebuild the checkpoint
# for exporting.
self._export_ckpt_manager = None
return logs
def _update_pt_stage_from_ckpt(self, ckpt_file):
"""Update stage properties based on the global_step variable in a ckpt file.
Before loading variables from a checkpoint file, we need to go to the
correct stage and build corresponding model and optimizer, to make sure that
we retore variables of the right model and optimizer.
Args:
ckpt_file: Checkpoint file that will be restored/read from.
"""
if not ckpt_file:
return
ckpt = tf.train.Checkpoint(global_step=self.global_step)
ckpt.read(ckpt_file).expect_partial().assert_existing_objects_matched()
if self._task.is_stage_advancing(self.global_step.numpy()):
old_train_dataset = self.train_dataset
# Update progressive properties
self._task.update_pt_stage(self.global_step.numpy(), pass_old_model=False)
# Setting `self._train_loop_fn` and `self._eval_loop_fn` to None will
# rebuild the train and eval functions with the updated model.
self._train_loop_fn = None
self._eval_loop_fn = None
if self.train_dataset != old_train_dataset:
# Setting `self._train_iter` to None will rebuild the dataset iterator.
self._train_iter = None
# Setting `self._export_ckpt_manager` to None will rebuild the checkpoint
# for exporting.
self._export_ckpt_manager = None
def _maybe_export_non_progressive_checkpoint(self, export_ckpt_dir):
"""Export checkpoints in non-progressive format.
This basically removes the wrapping of self._task.cur_checkpoint_items
-- just save the model, optimizer, etc., directly.
The purpose is to let your down-stream tasks to use these checkpoints.
Args:
export_ckpt_dir: A str. folder of exported checkpoints.
"""
if not self.config.trainer.export_checkpoint:
logging.info('Not exporting checkpoints.')
return
if not self._task.is_last_stage and (
self.config.trainer.export_only_final_stage_ckpt):
logging.info('Not exporting checkpoints until the last stage.')
return
if self._export_ckpt_manager is None:
# Create a checkpoint object just now, to make sure we use
# progressive_policy.cur_model and progressive_policy.cur_optimizer of the
# current stage.
if hasattr(self.model, 'checkpoint_items'):
checkpoint_items = self.model.checkpoint_items
else:
checkpoint_items = {}
checkpoint = tf.train.Checkpoint(
global_step=self.global_step,
model=self.model,
optimizer=self.optimizer,
**checkpoint_items)
max_to_keep = self.config.trainer.export_max_to_keep or (
self.config.trainer.max_to_keep)
checkpoint_interval = self.config.trainer.export_checkpoint_interval or (
self.config.trainer.checkpoint_interval)
self._export_ckpt_manager = tf.train.CheckpointManager(
checkpoint,
directory=export_ckpt_dir,
checkpoint_name='ckpt',
step_counter=self.global_step,
max_to_keep=max_to_keep,
checkpoint_interval=checkpoint_interval,
)
# Make sure we export the last checkpoint.
last_checkpoint = (
self.global_step.numpy() == self._config.trainer.train_steps)
checkpoint_path = self._export_ckpt_manager.save(
checkpoint_number=self.global_step.numpy(),
check_interval=not last_checkpoint)
if checkpoint_path:
logging.info('Checkpoints exported: %s.', checkpoint_path)
|