Spaces:
Sleeping
Sleeping
File size: 13,127 Bytes
5672777 93528c6 5672777 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 |
# Copyright 2023 The TensorFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Dataclasses for optimizer configs."""
from typing import List, Optional
import dataclasses
from official.modeling.hyperparams import base_config
@dataclasses.dataclass
class BaseOptimizerConfig(base_config.Config):
"""Base optimizer config.
Attributes:
clipnorm: float >= 0 or None. If not None, Gradients will be clipped when
their L2 norm exceeds this value.
clipvalue: float >= 0 or None. If not None, Gradients will be clipped when
their absolute value exceeds this value.
global_clipnorm: float >= 0 or None. If not None, gradient of all weights is
clipped so that their global norm is no higher than this value
"""
clipnorm: Optional[float] = None
clipvalue: Optional[float] = None
global_clipnorm: Optional[float] = None
@dataclasses.dataclass
class SGDConfig(BaseOptimizerConfig):
"""Configuration for SGD optimizer.
The attributes for this class matches the arguments of tf_keras.optimizer.SGD.
Attributes:
name: name of the optimizer.
decay: decay rate for SGD optimizer.
nesterov: nesterov for SGD optimizer.
momentum: momentum for SGD optimizer.
"""
name: str = "SGD"
decay: float = 0.0
nesterov: bool = False
momentum: float = 0.0
# TODO(b/216129465): Merge this config with SGDConfig after the experimental
# optimizer graduates.
@dataclasses.dataclass
class SGDExperimentalConfig(BaseOptimizerConfig):
"""Configuration for SGD optimizer.
The attributes for this class matches the arguments of
`tf_keras.optimizer.experimental.SGD`.
Attributes:
name: name of the optimizer.
nesterov: nesterov for SGD optimizer.
momentum: momentum for SGD optimizer.
jit_compile: if True, jit compile will be used.
"""
name: str = "SGD"
nesterov: bool = False
momentum: float = 0.0
jit_compile: bool = False
@dataclasses.dataclass
class RMSPropConfig(BaseOptimizerConfig):
"""Configuration for RMSProp optimizer.
The attributes for this class matches the arguments of
tf_keras.optimizers.RMSprop.
Attributes:
name: name of the optimizer.
rho: discounting factor for RMSprop optimizer.
momentum: momentum for RMSprop optimizer.
epsilon: epsilon value for RMSprop optimizer, help with numerical stability.
centered: Whether to normalize gradients or not.
"""
name: str = "RMSprop"
rho: float = 0.9
momentum: float = 0.0
epsilon: float = 1e-7
centered: bool = False
@dataclasses.dataclass
class AdagradConfig(BaseOptimizerConfig):
"""Configuration for Adagrad optimizer.
The attributes of this class match the arguments of
tf_keras.optimizer.Adagrad.
Attributes:
name: name of the optimizer.
initial_accumulator_value: A floating point value. Starting value for the
accumulators, must be non-negative.
epsilon: A small floating point value to avoid zero denominator.
"""
name: str = "Adagrad"
initial_accumulator_value: float = 0.1
epsilon: float = 1e-07
@dataclasses.dataclass
class AdamConfig(BaseOptimizerConfig):
"""Configuration for Adam optimizer.
The attributes for this class matches the arguments of
tf_keras.optimizer.Adam.
Attributes:
name: name of the optimizer.
beta_1: decay rate for 1st order moments.
beta_2: decay rate for 2st order moments.
epsilon: epsilon value used for numerical stability in Adam optimizer.
amsgrad: boolean. Whether to apply AMSGrad variant of this algorithm from
the paper "On the Convergence of Adam and beyond".
"""
name: str = "Adam"
beta_1: float = 0.9
beta_2: float = 0.999
epsilon: float = 1e-07
amsgrad: bool = False
@dataclasses.dataclass
class AdamExperimentalConfig(BaseOptimizerConfig):
"""Configuration for experimental Adam optimizer.
The attributes for this class matches the arguments of
`tf_keras.optimizer.experimental.Adam`.
Attributes:
name: name of the optimizer.
beta_1: decay rate for 1st order moments.
beta_2: decay rate for 2st order moments.
epsilon: epsilon value used for numerical stability in Adam optimizer.
amsgrad: boolean. Whether to apply AMSGrad variant of this algorithm from
the paper "On the Convergence of Adam and beyond".
jit_compile: if True, jit compile will be used.
"""
name: str = "Adam"
beta_1: float = 0.9
beta_2: float = 0.999
epsilon: float = 1e-07
amsgrad: bool = False
jit_compile: bool = False
@dataclasses.dataclass
class AdamWeightDecayConfig(BaseOptimizerConfig):
"""Configuration for Adam optimizer with weight decay.
Attributes:
name: name of the optimizer.
beta_1: decay rate for 1st order moments.
beta_2: decay rate for 2st order moments.
epsilon: epsilon value used for numerical stability in the optimizer.
amsgrad: boolean. Whether to apply AMSGrad variant of this algorithm from
the paper "On the Convergence of Adam and beyond".
weight_decay_rate: float. Weight decay rate. Default to 0.
include_in_weight_decay: list[str], or None. List of weight names to include
in weight decay.
exclude_from_weight_decay: list[str], or None. List of weight names to not
include in weight decay.
gradient_clip_norm: A positive float. Clips the gradients to this maximum
L2-norm. Default to 1.0.
"""
name: str = "AdamWeightDecay"
beta_1: float = 0.9
beta_2: float = 0.999
epsilon: float = 1e-07
amsgrad: bool = False
weight_decay_rate: float = 0.0
include_in_weight_decay: Optional[List[str]] = None
exclude_from_weight_decay: Optional[List[str]] = None
gradient_clip_norm: float = 1.0
@dataclasses.dataclass
class AdamWeightDecayExperimentalConfig(BaseOptimizerConfig):
"""Configuration for Adam optimizer with weight decay.
Attributes:
name: name of the optimizer.
beta_1: decay rate for 1st order moments.
beta_2: decay rate for 2st order moments.
epsilon: epsilon value used for numerical stability in the optimizer.
amsgrad: boolean. Whether to apply AMSGrad variant of this algorithm from
the paper "On the Convergence of Adam and beyond".
weight_decay: float. Weight decay rate. Default to 0.
global_clipnorm: A positive float. Clips the gradients to this maximum
L2-norm. Default to 1.0.
jit_compile: if True, jit compile will be used.
"""
name: str = "AdamWeightDecayExperimental"
beta_1: float = 0.9
beta_2: float = 0.999
epsilon: float = 1e-07
amsgrad: bool = False
weight_decay: float = 0.0
global_clipnorm: float = 1.0
jit_compile: bool = False
@dataclasses.dataclass
class LAMBConfig(BaseOptimizerConfig):
"""Configuration for LAMB optimizer.
The attributes for this class matches the arguments of LAMB optimizer.
Attributes:
name: name of the optimizer.
beta_1: decay rate for 1st order moments.
beta_2: decay rate for 2st order moments.
epsilon: epsilon value used for numerical stability in LAMB optimizer.
weight_decay_rate: float. Weight decay rate. Default to 0.
exclude_from_weight_decay: List of regex patterns of variables excluded from
weight decay. Variables whose name contain a substring matching the
pattern will be excluded.
exclude_from_layer_adaptation: List of regex patterns of variables excluded
from layer adaptation. Variables whose name contain a substring matching
the pattern will be excluded.
"""
name: str = "LAMB"
beta_1: float = 0.9
beta_2: float = 0.999
epsilon: float = 1e-6
weight_decay_rate: float = 0.0
exclude_from_weight_decay: Optional[List[str]] = None
exclude_from_layer_adaptation: Optional[List[str]] = None
@dataclasses.dataclass
class EMAConfig(BaseOptimizerConfig):
"""Exponential moving average optimizer config.
Attributes:
name: 'str', name of the optimizer.
trainable_weights_only: 'bool', if True, only model trainable weights will
be updated. Otherwise, all model weights will be updated. This mainly
affects batch normalization parameters.
average_decay: 'float', average decay value.
start_step: 'int', start step to apply moving average.
dynamic_decay: 'bool', whether to apply dynamic decay or not.
"""
name: str = "ExponentialMovingAverage"
trainable_weights_only: bool = True
average_decay: float = 0.99
start_step: int = 0
dynamic_decay: bool = True
@dataclasses.dataclass
class LARSConfig(BaseOptimizerConfig):
"""Layer-wise adaptive rate scaling config.
Attributes:
name: 'str', name of the optimizer.
momentum: `float` hyperparameter >= 0 that accelerates gradient descent in
the relevant direction and dampens oscillations. Defaults to 0.9.
eeta: `float` LARS coefficient as used in the paper. Default set to LARS
coefficient from the paper. (eeta / weight_decay) determines the highest
scaling factor in LARS..
weight_decay_rate: `float` for weight decay.
nesterov: 'boolean' for whether to use nesterov momentum.
classic_momentum: `boolean` for whether to use classic (or popular)
momentum. The learning rate is applied during momentum update in classic
momentum, but after momentum for popular momentum.
exclude_from_weight_decay: A list of `string` for variable screening, if any
of the string appears in a variable's name, the variable will be excluded
for computing weight decay. For example, one could specify the list like
['batch_normalization', 'bias'] to exclude BN and bias from weight decay.
exclude_from_layer_adaptation: Similar to exclude_from_weight_decay, but for
layer adaptation. If it is None, it will be defaulted the same as
exclude_from_weight_decay.
"""
name: str = "LARS"
momentum: float = 0.9
eeta: float = 0.001
weight_decay_rate: float = 0.0
nesterov: bool = False
classic_momentum: bool = True
exclude_from_weight_decay: Optional[List[str]] = None
exclude_from_layer_adaptation: Optional[List[str]] = None
@dataclasses.dataclass
class SLIDEConfig(BaseOptimizerConfig):
"""Configuration for SLIDE optimizer.
Details coming soon.
"""
name: str = "SLIDE"
beta_1: float = 0.9
beta_2: float = 0.999
epsilon: float = 1e-6
weight_decay_rate: float = 0.0
weight_decay_type: str = "inner"
exclude_from_weight_decay: Optional[List[str]] = None
exclude_from_layer_adaptation: Optional[List[str]] = None
include_in_sparse_layer_adaptation: Optional[List[str]] = None
sparse_layer_learning_rate: float = 0.1
do_gradient_rescaling: bool = True
norm_type: str = "layer"
ratio_clip_norm: float = 1e5
@dataclasses.dataclass
class AdafactorConfig(BaseOptimizerConfig):
"""Configuration for Adafactor optimizer.
The attributes for this class matches the arguments of the Adafactor
implementation.
"""
name: str = "Adafactor"
factored: bool = True
multiply_by_parameter_scale: bool = True
beta1: Optional[float] = None
decay_rate: float = 0.8
step_offset: int = 0
clipping_threshold: float = 1.0
min_dim_size_to_factor: int = 128
epsilon1: float = 1e-30
epsilon2: float = 1e-3
weight_decay: Optional[float] = None
include_in_weight_decay: Optional[str] = None
@dataclasses.dataclass
class AdafactorKerasConfig(BaseOptimizerConfig):
"""Configuration for AdafactorKeras optimizer.
The attributes for this class matches the arguments of the Adafactor
implementation provided by keras.
Attributes:
learning_rate: Initial value for the learning rate: either a floating
point value, or a
`tf_keras.optimizers.schedules.LearningRateSchedule` instance.
Defaults to 0.001.
beta_2_decay: float, defaults to -0.8. The decay rate of `beta_2`.
epsilon_1: float, defaults to 1e-30. A small offset to keep denominator
away from 0.
epsilon_2: float, defaults to 1e-3. A small offset to avoid learning
rate becoming too small by time.
clip_threshold: float, defaults to 1.0. Clipping threshold. This is a
part of Adafactor algorithm, independent from `clipnorm`, `clipvalue`
and `global_clipnorm`.
relative_step: bool, defaults to True. If `learning_rate` is a constant
and `relative_step=True`, learning rate will be adjusted based on
current iterations. This is a default learning rate decay in
Adafactor.
"""
name: str = "Adafactor"
learning_rate: float = 0.001
beta_2_decay: float = -0.8
epsilon_1: float = 1e-30
epsilon_2: float = 1e-3
clip_threshold: float = 1.0
relative_step: bool = True
|