Spaces:
Sleeping
Sleeping
File size: 24,603 Bytes
5672777 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 |
# Copyright 2023 The TensorFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Loads dataset for the BERT pretraining task."""
import dataclasses
from typing import Mapping, Optional
from absl import logging
import numpy as np
import tensorflow as tf, tf_keras
from official.common import dataset_fn
from official.core import config_definitions as cfg
from official.core import input_reader
from official.nlp.data import data_loader
from official.nlp.data import data_loader_factory
@dataclasses.dataclass
class BertPretrainDataConfig(cfg.DataConfig):
"""Data config for BERT pretraining task (tasks/masked_lm)."""
input_path: str = ''
global_batch_size: int = 512
is_training: bool = True
seq_length: int = 512
max_predictions_per_seq: int = 76
use_next_sentence_label: bool = True
use_position_id: bool = False
# Historically, BERT implementations take `input_ids` and `segment_ids` as
# feature names. Inside the TF Model Garden implementation, the Keras model
# inputs are set as `input_word_ids` and `input_type_ids`. When
# v2_feature_names is True, the data loader assumes the tf.Examples use
# `input_word_ids` and `input_type_ids` as keys.
use_v2_feature_names: bool = False
file_type: str = 'tfrecord'
@data_loader_factory.register_data_loader_cls(BertPretrainDataConfig)
class BertPretrainDataLoader(data_loader.DataLoader):
"""A class to load dataset for bert pretraining task."""
def __init__(self, params):
"""Inits `BertPretrainDataLoader` class.
Args:
params: A `BertPretrainDataConfig` object.
"""
self._params = params
self._seq_length = params.seq_length
self._max_predictions_per_seq = params.max_predictions_per_seq
self._use_next_sentence_label = params.use_next_sentence_label
self._use_position_id = params.use_position_id
def _name_to_features(self):
name_to_features = {
'input_mask':
tf.io.FixedLenFeature([self._seq_length], tf.int64),
'masked_lm_positions':
tf.io.FixedLenFeature([self._max_predictions_per_seq], tf.int64),
'masked_lm_ids':
tf.io.FixedLenFeature([self._max_predictions_per_seq], tf.int64),
'masked_lm_weights':
tf.io.FixedLenFeature([self._max_predictions_per_seq], tf.float32),
}
if self._params.use_v2_feature_names:
name_to_features.update({
'input_word_ids': tf.io.FixedLenFeature([self._seq_length], tf.int64),
'input_type_ids': tf.io.FixedLenFeature([self._seq_length], tf.int64),
})
else:
name_to_features.update({
'input_ids': tf.io.FixedLenFeature([self._seq_length], tf.int64),
'segment_ids': tf.io.FixedLenFeature([self._seq_length], tf.int64),
})
if self._use_next_sentence_label:
name_to_features['next_sentence_labels'] = tf.io.FixedLenFeature([1],
tf.int64)
if self._use_position_id:
name_to_features['position_ids'] = tf.io.FixedLenFeature(
[self._seq_length], tf.int64)
return name_to_features
def _decode(self, record: tf.Tensor):
"""Decodes a serialized tf.Example."""
name_to_features = self._name_to_features()
example = tf.io.parse_single_example(record, name_to_features)
# tf.Example only supports tf.int64, but the TPU only supports tf.int32.
# So cast all int64 to int32.
for name in list(example.keys()):
t = example[name]
if t.dtype == tf.int64:
t = tf.cast(t, tf.int32)
example[name] = t
return example
def _parse(self, record: Mapping[str, tf.Tensor]):
"""Parses raw tensors into a dict of tensors to be consumed by the model."""
x = {
'input_mask': record['input_mask'],
'masked_lm_positions': record['masked_lm_positions'],
'masked_lm_ids': record['masked_lm_ids'],
'masked_lm_weights': record['masked_lm_weights'],
}
if self._params.use_v2_feature_names:
x['input_word_ids'] = record['input_word_ids']
x['input_type_ids'] = record['input_type_ids']
else:
x['input_word_ids'] = record['input_ids']
x['input_type_ids'] = record['segment_ids']
if self._use_next_sentence_label:
x['next_sentence_labels'] = record['next_sentence_labels']
if self._use_position_id:
x['position_ids'] = record['position_ids']
return x
def load(self, input_context: Optional[tf.distribute.InputContext] = None):
"""Returns a tf.dataset.Dataset."""
reader = input_reader.InputReader(
params=self._params,
dataset_fn=dataset_fn.pick_dataset_fn(self._params.file_type),
decoder_fn=self._decode,
parser_fn=self._parse)
return reader.read(input_context)
@dataclasses.dataclass
class XLNetPretrainDataConfig(cfg.DataConfig):
"""Data config for XLNet pretraining task.
Attributes:
input_path: See base class.
global_batch_size: See base calss.
is_training: See base class.
seq_length: The length of each sequence.
max_predictions_per_seq: The number of predictions per sequence.
reuse_length: The number of tokens in a previous segment to reuse. This
should be the same value used during pretrain data creation.
sample_strategy: The strategy used to sample factorization permutations.
Possible values: 'single_token', 'whole_word', 'token_span', 'word_span'.
min_num_tokens: The minimum number of tokens to sample in a span. This is
used when `sample_strategy` is 'token_span'.
max_num_tokens: The maximum number of tokens to sample in a span. This is
used when `sample_strategy` is 'token_span'.
min_num_words: The minimum number of words to sample in a span. This is used
when `sample_strategy` is 'word_span'.
max_num_words: The maximum number of words to sample in a span. This is used
when `sample_strategy` is 'word_span'.
permutation_size: The length of the longest permutation. This can be set to
`reuse_length`. This should NOT be greater than `reuse_length`, otherwise
this may introduce data leaks.
leak_ratio: The percentage of masked tokens that are leaked.
segment_sep_id: The ID of the SEP token used when preprocessing the dataset.
segment_cls_id: The ID of the CLS token used when preprocessing the dataset.
"""
input_path: str = ''
global_batch_size: int = 512
is_training: bool = True
seq_length: int = 512
max_predictions_per_seq: int = 76
reuse_length: int = 256
sample_strategy: str = 'word_span'
min_num_tokens: int = 1
max_num_tokens: int = 5
min_num_words: int = 1
max_num_words: int = 5
permutation_size: int = 256
leak_ratio: float = 0.1
segment_sep_id: int = 4
segment_cls_id: int = 3
@data_loader_factory.register_data_loader_cls(XLNetPretrainDataConfig)
class XLNetPretrainDataLoader(data_loader.DataLoader):
"""A class to load dataset for xlnet pretraining task."""
def __init__(self, params: XLNetPretrainDataConfig):
"""Inits `XLNetPretrainDataLoader` class.
Args:
params: A `XLNetPretrainDataConfig` object.
"""
self._params = params
self._seq_length = params.seq_length
self._max_predictions_per_seq = params.max_predictions_per_seq
self._reuse_length = params.reuse_length
self._num_replicas_in_sync = None
self._permutation_size = params.permutation_size
self._sep_id = params.segment_sep_id
self._cls_id = params.segment_cls_id
self._sample_strategy = params.sample_strategy
self._leak_ratio = params.leak_ratio
def _decode(self, record: tf.Tensor):
"""Decodes a serialized tf.Example."""
name_to_features = {
'input_word_ids': tf.io.FixedLenFeature([self._seq_length], tf.int64),
'input_type_ids': tf.io.FixedLenFeature([self._seq_length], tf.int64),
'boundary_indices': tf.io.VarLenFeature(tf.int64),
}
example = tf.io.parse_single_example(record, name_to_features)
# tf.Example only supports tf.int64, but the TPU only supports tf.int32.
# So cast all int64 to int32.
for name in list(example.keys()):
t = example[name]
if t.dtype == tf.int64:
t = tf.cast(t, tf.int32)
example[name] = t
return example
def _parse(self, record: Mapping[str, tf.Tensor]):
"""Parses raw tensors into a dict of tensors to be consumed by the model."""
x = {}
inputs = record['input_word_ids']
x['input_type_ids'] = record['input_type_ids']
if self._sample_strategy in ['whole_word', 'word_span']:
boundary = tf.sparse.to_dense(record['boundary_indices'])
else:
boundary = None
input_mask = self._online_sample_mask(inputs=inputs, boundary=boundary)
if self._reuse_length > 0:
if self._permutation_size > self._reuse_length:
logging.warning(
'`permutation_size` is greater than `reuse_length` (%d > %d).'
'This may introduce data leakage.', self._permutation_size,
self._reuse_length)
# Enable the memory mechanism.
# Permute the reuse and non-reuse segments separately.
non_reuse_len = self._seq_length - self._reuse_length
if not (self._reuse_length % self._permutation_size == 0 and
non_reuse_len % self._permutation_size == 0):
raise ValueError('`reuse_length` and `seq_length` should both be '
'a multiple of `permutation_size`.')
# Creates permutation mask and target mask for the first reuse_len tokens.
# The tokens in this part are reused from the last sequence.
perm_mask_0, target_mask_0, tokens_0, masked_0 = self._get_factorization(
inputs=inputs[:self._reuse_length],
input_mask=input_mask[:self._reuse_length])
# Creates permutation mask and target mask for the rest of tokens in
# current example, which are concatentation of two new segments.
perm_mask_1, target_mask_1, tokens_1, masked_1 = self._get_factorization(
inputs[self._reuse_length:], input_mask[self._reuse_length:])
perm_mask_0 = tf.concat([
perm_mask_0,
tf.zeros([self._reuse_length, non_reuse_len], dtype=tf.int32)
],
axis=1)
perm_mask_1 = tf.concat([
tf.ones([non_reuse_len, self._reuse_length], dtype=tf.int32),
perm_mask_1
],
axis=1)
perm_mask = tf.concat([perm_mask_0, perm_mask_1], axis=0)
target_mask = tf.concat([target_mask_0, target_mask_1], axis=0)
tokens = tf.concat([tokens_0, tokens_1], axis=0)
masked_tokens = tf.concat([masked_0, masked_1], axis=0)
else:
# Disable the memory mechanism.
if self._seq_length % self._permutation_size != 0:
raise ValueError('`seq_length` should be a multiple of '
'`permutation_size`.')
# Permute the entire sequence together
perm_mask, target_mask, tokens, masked_tokens = self._get_factorization(
inputs=inputs, input_mask=input_mask)
x['permutation_mask'] = tf.reshape(perm_mask,
[self._seq_length, self._seq_length])
x['input_word_ids'] = tokens
x['masked_tokens'] = masked_tokens
target = tokens
if self._max_predictions_per_seq is not None:
indices = tf.range(self._seq_length, dtype=tf.int32)
bool_target_mask = tf.cast(target_mask, tf.bool)
indices = tf.boolean_mask(indices, bool_target_mask)
# account for extra padding due to CLS/SEP.
actual_num_predict = tf.shape(indices)[0]
pad_len = self._max_predictions_per_seq - actual_num_predict
target_mapping = tf.one_hot(indices, self._seq_length, dtype=tf.int32)
paddings = tf.zeros([pad_len, self._seq_length],
dtype=target_mapping.dtype)
target_mapping = tf.concat([target_mapping, paddings], axis=0)
x['target_mapping'] = tf.reshape(
target_mapping, [self._max_predictions_per_seq, self._seq_length])
target = tf.boolean_mask(target, bool_target_mask)
paddings = tf.zeros([pad_len], dtype=target.dtype)
target = tf.concat([target, paddings], axis=0)
x['target'] = tf.reshape(target, [self._max_predictions_per_seq])
target_mask = tf.concat([
tf.ones([actual_num_predict], dtype=tf.int32),
tf.zeros([pad_len], dtype=tf.int32)
],
axis=0)
x['target_mask'] = tf.reshape(target_mask,
[self._max_predictions_per_seq])
else:
x['target'] = tf.reshape(target, [self._seq_length])
x['target_mask'] = tf.reshape(target_mask, [self._seq_length])
return x
def _index_pair_to_mask(self, begin_indices: tf.Tensor,
end_indices: tf.Tensor,
inputs: tf.Tensor) -> tf.Tensor:
"""Converts beginning and end indices into an actual mask."""
non_func_mask = tf.logical_and(
tf.not_equal(inputs, self._sep_id), tf.not_equal(inputs, self._cls_id))
all_indices = tf.where(
non_func_mask, tf.range(self._seq_length, dtype=tf.int32),
tf.constant(-1, shape=[self._seq_length], dtype=tf.int32))
candidate_matrix = tf.cast(
tf.logical_and(all_indices[None, :] >= begin_indices[:, None],
all_indices[None, :] < end_indices[:, None]), tf.float32)
cumsum_matrix = tf.reshape(
tf.cumsum(tf.reshape(candidate_matrix, [-1])), [-1, self._seq_length])
masked_matrix = tf.cast(cumsum_matrix <= self._max_predictions_per_seq,
tf.float32)
target_mask = tf.reduce_sum(candidate_matrix * masked_matrix, axis=0)
return tf.cast(target_mask, tf.bool)
def _single_token_mask(self, inputs: tf.Tensor) -> tf.Tensor:
"""Samples individual tokens as prediction targets."""
all_indices = tf.range(self._seq_length, dtype=tf.int32)
non_func_mask = tf.logical_and(
tf.not_equal(inputs, self._sep_id), tf.not_equal(inputs, self._cls_id))
non_func_indices = tf.boolean_mask(all_indices, non_func_mask)
masked_pos = tf.random.shuffle(non_func_indices)
masked_pos = tf.sort(masked_pos[:self._max_predictions_per_seq])
sparse_indices = tf.stack([tf.zeros_like(masked_pos), masked_pos], axis=-1)
sparse_indices = tf.cast(sparse_indices, tf.int64)
sparse_indices = tf.sparse.SparseTensor(
sparse_indices,
values=tf.ones_like(masked_pos),
dense_shape=(1, self._seq_length))
target_mask = tf.sparse.to_dense(sp_input=sparse_indices, default_value=0)
return tf.squeeze(tf.cast(target_mask, tf.bool))
def _whole_word_mask(self, inputs: tf.Tensor,
boundary: tf.Tensor) -> tf.Tensor:
"""Samples whole words as prediction targets."""
pair_indices = tf.concat([boundary[:-1, None], boundary[1:, None]], axis=1)
cand_pair_indices = tf.random.shuffle(
pair_indices)[:self._max_predictions_per_seq]
begin_indices = cand_pair_indices[:, 0]
end_indices = cand_pair_indices[:, 1]
return self._index_pair_to_mask(
begin_indices=begin_indices, end_indices=end_indices, inputs=inputs)
def _token_span_mask(self, inputs: tf.Tensor) -> tf.Tensor:
"""Samples token spans as prediction targets."""
min_num_tokens = self._params.min_num_tokens
max_num_tokens = self._params.max_num_tokens
mask_alpha = self._seq_length / self._max_predictions_per_seq
round_to_int = lambda x: tf.cast(tf.round(x), tf.int32)
# Sample span lengths from a zipf distribution
span_len_seq = np.arange(min_num_tokens, max_num_tokens + 1)
probs = np.array([1.0 / (i + 1) for i in span_len_seq])
probs /= np.sum(probs)
logits = tf.constant(np.log(probs), dtype=tf.float32)
span_lens = tf.random.categorical(
logits=logits[None],
num_samples=self._max_predictions_per_seq,
dtype=tf.int32,
)[0] + min_num_tokens
# Sample the ratio [0.0, 1.0) of left context lengths
span_lens_float = tf.cast(span_lens, tf.float32)
left_ratio = tf.random.uniform(
shape=[self._max_predictions_per_seq], minval=0.0, maxval=1.0)
left_ctx_len = left_ratio * span_lens_float * (mask_alpha - 1)
left_ctx_len = round_to_int(left_ctx_len)
# Compute the offset from left start to the right end
right_offset = round_to_int(span_lens_float * mask_alpha) - left_ctx_len
# Get the actual begin and end indices
begin_indices = (
tf.cumsum(left_ctx_len) + tf.cumsum(right_offset, exclusive=True))
end_indices = begin_indices + span_lens
# Remove out of range indices
valid_idx_mask = end_indices < self._seq_length
begin_indices = tf.boolean_mask(begin_indices, valid_idx_mask)
end_indices = tf.boolean_mask(end_indices, valid_idx_mask)
# Shuffle valid indices
num_valid = tf.cast(tf.shape(begin_indices)[0], tf.int32)
order = tf.random.shuffle(tf.range(num_valid, dtype=tf.int32))
begin_indices = tf.gather(begin_indices, order)
end_indices = tf.gather(end_indices, order)
return self._index_pair_to_mask(
begin_indices=begin_indices, end_indices=end_indices, inputs=inputs)
def _word_span_mask(self, inputs: tf.Tensor, boundary: tf.Tensor):
"""Sample whole word spans as prediction targets."""
min_num_words = self._params.min_num_words
max_num_words = self._params.max_num_words
# Note: 1.2 is the token-to-word ratio
mask_alpha = self._seq_length / self._max_predictions_per_seq / 1.2
round_to_int = lambda x: tf.cast(tf.round(x), tf.int32)
# Sample span lengths from a zipf distribution
span_len_seq = np.arange(min_num_words, max_num_words + 1)
probs = np.array([1.0 / (i + 1) for i in span_len_seq])
probs /= np.sum(probs)
logits = tf.constant(np.log(probs), dtype=tf.float32)
# Sample `num_predict` words here: note that this is over sampling
span_lens = tf.random.categorical(
logits=logits[None],
num_samples=self._max_predictions_per_seq,
dtype=tf.int32,
)[0] + min_num_words
# Sample the ratio [0.0, 1.0) of left context lengths
span_lens_float = tf.cast(span_lens, tf.float32)
left_ratio = tf.random.uniform(
shape=[self._max_predictions_per_seq], minval=0.0, maxval=1.0)
left_ctx_len = left_ratio * span_lens_float * (mask_alpha - 1)
left_ctx_len = round_to_int(left_ctx_len)
right_offset = round_to_int(span_lens_float * mask_alpha) - left_ctx_len
begin_indices = (
tf.cumsum(left_ctx_len) + tf.cumsum(right_offset, exclusive=True))
end_indices = begin_indices + span_lens
# Remove out of range indices
max_boundary_index = tf.cast(tf.shape(boundary)[0] - 1, tf.int32)
valid_idx_mask = end_indices < max_boundary_index
begin_indices = tf.boolean_mask(begin_indices, valid_idx_mask)
end_indices = tf.boolean_mask(end_indices, valid_idx_mask)
begin_indices = tf.gather(boundary, begin_indices)
end_indices = tf.gather(boundary, end_indices)
# Shuffle valid indices
num_valid = tf.cast(tf.shape(begin_indices)[0], tf.int32)
order = tf.random.shuffle(tf.range(num_valid, dtype=tf.int32))
begin_indices = tf.gather(begin_indices, order)
end_indices = tf.gather(end_indices, order)
return self._index_pair_to_mask(
begin_indices=begin_indices, end_indices=end_indices, inputs=inputs)
def _online_sample_mask(self, inputs: tf.Tensor,
boundary: tf.Tensor) -> tf.Tensor:
"""Samples target positions for predictions.
Descriptions of each strategy:
- 'single_token': Samples individual tokens as prediction targets.
- 'token_span': Samples spans of tokens as prediction targets.
- 'whole_word': Samples individual words as prediction targets.
- 'word_span': Samples spans of words as prediction targets.
Args:
inputs: The input tokens.
boundary: The `int` Tensor of indices indicating whole word boundaries.
This is used in 'whole_word' and 'word_span'
Returns:
The sampled `bool` input mask.
Raises:
`ValueError`: if `max_predictions_per_seq` is not set or if boundary is
not provided for 'whole_word' and 'word_span' sample strategies.
"""
if self._max_predictions_per_seq is None:
raise ValueError('`max_predictions_per_seq` must be set.')
if boundary is None and 'word' in self._sample_strategy:
raise ValueError('`boundary` must be provided for {} strategy'.format(
self._sample_strategy))
if self._sample_strategy == 'single_token':
return self._single_token_mask(inputs)
elif self._sample_strategy == 'token_span':
return self._token_span_mask(inputs)
elif self._sample_strategy == 'whole_word':
return self._whole_word_mask(inputs, boundary)
elif self._sample_strategy == 'word_span':
return self._word_span_mask(inputs, boundary)
else:
raise NotImplementedError('Invalid sample strategy.')
def _get_factorization(self, inputs: tf.Tensor, input_mask: tf.Tensor):
"""Samples a permutation of the factorization order.
Args:
inputs: the input tokens.
input_mask: the `bool` Tensor of the same shape as `inputs`. If `True`,
then this means select for partial prediction.
Returns:
perm_mask: An `int32` Tensor of shape [seq_length, seq_length] consisting
of 0s and 1s. If perm_mask[i][j] == 0, then this means that the i-th
token (in original order) cannot attend to the jth attention token.
target_mask: An `int32` Tensor of shape [seq_len] consisting of 0s and 1s.
If target_mask[i] == 1, then the i-th token needs to be predicted and
the mask will be used as input. This token will be included in the loss.
If target_mask[i] == 0, then the token (or [SEP], [CLS]) will be used as
input. This token will not be included in the loss.
tokens: int32 Tensor of shape [seq_length].
masked_tokens: int32 Tensor of shape [seq_length].
"""
factorization_length = tf.shape(inputs)[0]
# Generate permutation indices
index = tf.range(factorization_length, dtype=tf.int32)
index = tf.transpose(tf.reshape(index, [-1, self._permutation_size]))
index = tf.random.shuffle(index)
index = tf.reshape(tf.transpose(index), [-1])
input_mask = tf.cast(input_mask, tf.bool)
# non-functional tokens
non_func_tokens = tf.logical_not(
tf.logical_or(
tf.equal(inputs, self._sep_id), tf.equal(inputs, self._cls_id)))
masked_tokens = tf.logical_and(input_mask, non_func_tokens)
non_masked_or_func_tokens = tf.logical_not(masked_tokens)
smallest_index = -2 * tf.ones([factorization_length], dtype=tf.int32)
# Similar to BERT, randomly leak some masked tokens
if self._leak_ratio > 0:
leak_tokens = tf.logical_and(
masked_tokens,
tf.random.uniform([factorization_length], maxval=1.0) <
self._leak_ratio)
can_attend_self = tf.logical_or(non_masked_or_func_tokens, leak_tokens)
else:
can_attend_self = non_masked_or_func_tokens
to_index = tf.where(can_attend_self, smallest_index, index)
from_index = tf.where(can_attend_self, to_index + 1, to_index)
# For masked tokens, can attend if i > j
# For context tokens, always can attend each other
can_attend = from_index[:, None] > to_index[None, :]
perm_mask = tf.cast(can_attend, tf.int32)
# Only masked tokens are included in the loss
target_mask = tf.cast(masked_tokens, tf.int32)
return perm_mask, target_mask, inputs, masked_tokens
def load(self, input_context: Optional[tf.distribute.InputContext] = None):
"""Returns a tf.dataset.Dataset."""
if input_context:
self._num_replicas_in_sync = input_context.num_replicas_in_sync
reader = input_reader.InputReader(
params=self._params, decoder_fn=self._decode, parser_fn=self._parse)
return reader.read(input_context)
|