Spaces:
Sleeping
Sleeping
File size: 9,007 Bytes
5672777 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 |
# Copyright 2023 The TensorFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Loads text dataset for the BERT pretraining task."""
import dataclasses
from typing import List, Mapping, Optional, Text
import tensorflow as tf, tf_keras
import tensorflow_text as tf_text
from official.common import dataset_fn
from official.core import config_definitions as cfg
from official.core import input_reader
from official.nlp.data import data_loader
from official.nlp.data import data_loader_factory
from official.nlp.modeling.ops import segment_extractor
@dataclasses.dataclass
class BertPretrainTextDataConfig(cfg.DataConfig):
"""Data config for BERT pretraining task (tasks/masked_lm) from text."""
input_path: str = ""
doc_batch_size: int = 8
global_batch_size: int = 512
is_training: bool = True
seq_length: int = 512
max_predictions_per_seq: int = 76
use_next_sentence_label: bool = True
# The name of the text feature fields. The text features will be
# concatenated in order.
# Note: More than 1 field name is not compatible with NSP.
text_field_names: Optional[List[str]] = dataclasses.field(
default_factory=lambda: ["text"])
vocab_file_path: str = ""
masking_rate: float = 0.15
use_whole_word_masking: bool = False
file_type: str = "tfrecord"
_CLS_TOKEN = b"[CLS]"
_SEP_TOKEN = b"[SEP]"
_MASK_TOKEN = b"[MASK]"
_NUM_OOV_BUCKETS = 1
# Accounts for [CLS] and 2 x [SEP] tokens
_NUM_SPECIAL_TOKENS = 3
@data_loader_factory.register_data_loader_cls(BertPretrainTextDataConfig)
class BertPretrainTextDataLoader(data_loader.DataLoader):
"""A class to load text dataset for BERT pretraining task."""
def __init__(self, params):
"""Inits `BertPretrainTextDataLoader` class.
Args:
params: A `BertPretrainTextDataConfig` object.
"""
if len(params.text_field_names) > 1 and params.use_next_sentence_label:
raise ValueError("Currently there is no support for more than text field "
"while generating next sentence labels.")
self._params = params
self._seq_length = params.seq_length
self._max_predictions_per_seq = params.max_predictions_per_seq
self._use_next_sentence_label = params.use_next_sentence_label
self._masking_rate = params.masking_rate
self._use_whole_word_masking = params.use_whole_word_masking
lookup_table_init = tf.lookup.TextFileInitializer(
params.vocab_file_path,
key_dtype=tf.string,
key_index=tf.lookup.TextFileIndex.WHOLE_LINE,
value_dtype=tf.int64,
value_index=tf.lookup.TextFileIndex.LINE_NUMBER)
self._vocab_lookup_table = tf.lookup.StaticVocabularyTable(
lookup_table_init,
num_oov_buckets=_NUM_OOV_BUCKETS,
lookup_key_dtype=tf.string)
self._cls_token = self._vocab_lookup_table.lookup(tf.constant(_CLS_TOKEN))
self._sep_token = self._vocab_lookup_table.lookup(tf.constant(_SEP_TOKEN))
self._mask_token = self._vocab_lookup_table.lookup(tf.constant(_MASK_TOKEN))
# -_NUM_OOV_BUCKETS to offset unused OOV bucket.
self._vocab_size = self._vocab_lookup_table.size() - _NUM_OOV_BUCKETS
def _decode(self, record: tf.Tensor) -> Mapping[Text, tf.Tensor]:
"""Decodes a serialized tf.Example."""
name_to_features = {}
for text_field_name in self._params.text_field_names:
name_to_features[text_field_name] = tf.io.FixedLenFeature([], tf.string)
return tf.io.parse_single_example(record, name_to_features)
def _tokenize(self, segments):
"""Tokenize the input segments."""
# Tokenize segments
tokenizer = tf_text.BertTokenizer(
self._vocab_lookup_table, token_out_type=tf.int64)
if self._use_whole_word_masking:
# tokenize the segments which should have the shape:
# [num_sentence, (num_words), (num_wordpieces)]
segments = [tokenizer.tokenize(s) for s in segments]
else:
# tokenize the segments and merge out the token dimension so that each
# segment has the shape: [num_sentence, (num_wordpieces)]
segments = [tokenizer.tokenize(s).merge_dims(-2, -1) for s in segments]
# Truncate inputs
trimmer = tf_text.WaterfallTrimmer(
self._seq_length - _NUM_SPECIAL_TOKENS, axis=-1)
truncated_segments = trimmer.trim(segments)
# Combine segments, get segment ids and add special tokens
return tf_text.combine_segments(
truncated_segments,
start_of_sequence_id=self._cls_token,
end_of_segment_id=self._sep_token)
def _bert_preprocess(self, record: Mapping[str, tf.Tensor]):
"""Parses raw tensors into a dict of tensors to be consumed by the model."""
if self._use_next_sentence_label:
input_text = record[self._params.text_field_names[0]]
# Split sentences
sentence_breaker = tf_text.RegexSplitter()
sentences = sentence_breaker.split(input_text)
# Extract next-sentence-prediction labels and segments
next_or_random_segment, is_next = (
segment_extractor.get_next_sentence_labels(sentences))
# merge dims to change shape from [num_docs, (num_segments)] to
# [total_num_segments]
is_next = is_next.merge_dims(-2, -1)
# construct segments with shape [(num_sentence)]
segments = [
sentences.merge_dims(-2, -1),
next_or_random_segment.merge_dims(-2, -1)
]
else:
segments = [record[name] for name in self._params.text_field_names]
segments_combined, segment_ids = self._tokenize(segments)
# Dynamic masking
item_selector = tf_text.RandomItemSelector(
self._max_predictions_per_seq,
selection_rate=self._masking_rate,
unselectable_ids=[self._cls_token, self._sep_token],
shuffle_fn=(tf.identity if self._params.deterministic else None))
values_chooser = tf_text.MaskValuesChooser(
vocab_size=self._vocab_size, mask_token=self._mask_token)
masked_input_ids, masked_lm_positions, masked_lm_ids = (
tf_text.mask_language_model(
segments_combined,
item_selector=item_selector,
mask_values_chooser=values_chooser,
))
# Pad out to fixed shape and get input mask.
seq_lengths = {
"input_word_ids": self._seq_length,
"input_type_ids": self._seq_length,
"masked_lm_positions": self._max_predictions_per_seq,
"masked_lm_ids": self._max_predictions_per_seq,
}
model_inputs = {
"input_word_ids": masked_input_ids,
"input_type_ids": segment_ids,
"masked_lm_positions": masked_lm_positions,
"masked_lm_ids": masked_lm_ids,
}
padded_inputs_and_mask = tf.nest.map_structure(tf_text.pad_model_inputs,
model_inputs, seq_lengths)
model_inputs = {
k: padded_inputs_and_mask[k][0] for k in padded_inputs_and_mask
}
model_inputs["masked_lm_weights"] = tf.cast(
padded_inputs_and_mask["masked_lm_ids"][1], tf.float32)
model_inputs["input_mask"] = padded_inputs_and_mask["input_word_ids"][1]
if self._use_next_sentence_label:
model_inputs["next_sentence_labels"] = is_next
for name in model_inputs:
t = model_inputs[name]
if t.dtype == tf.int64:
t = tf.cast(t, tf.int32)
model_inputs[name] = t
return model_inputs
def load(self, input_context: Optional[tf.distribute.InputContext] = None):
"""Returns a tf.dataset.Dataset."""
def _batch_docs(dataset, input_context):
per_core_doc_batch_size = (
input_context.get_per_replica_batch_size(self._params.doc_batch_size)
if input_context else self._params.doc_batch_size)
return dataset.batch(per_core_doc_batch_size)
reader = input_reader.InputReader(
params=self._params,
dataset_fn=dataset_fn.pick_dataset_fn(self._params.file_type),
decoder_fn=self._decode if self._params.input_path else None,
transform_and_batch_fn=_batch_docs
if self._use_next_sentence_label else None,
postprocess_fn=self._bert_preprocess)
transformed_inputs = reader.read(input_context)
per_core_example_batch_size = (
input_context.get_per_replica_batch_size(self._params.global_batch_size)
if input_context else self._params.global_batch_size)
batched_inputs = transformed_inputs.unbatch().batch(
per_core_example_batch_size, self._params.drop_remainder)
return batched_inputs.prefetch(tf.data.experimental.AUTOTUNE)
|