Spaces:
Sleeping
Sleeping
File size: 10,368 Bytes
5672777 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 |
# Copyright 2023 The TensorFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Runs prediction to generate submission files for GLUE tasks."""
import functools
import json
import os
import pprint
from absl import app
from absl import flags
from absl import logging
import gin
import tensorflow as tf, tf_keras
from official.common import distribute_utils
# Imports registered experiment configs.
from official.common import registry_imports # pylint: disable=unused-import
from official.core import exp_factory
from official.core import task_factory
from official.core import train_lib
from official.core import train_utils
from official.modeling.hyperparams import params_dict
from official.nlp.finetuning import binary_helper
from official.nlp.finetuning.glue import flags as glue_flags
# Device configs.
flags.DEFINE_string('distribution_strategy', 'tpu',
'The Distribution Strategy to use for training.')
flags.DEFINE_string(
'tpu', '',
'The Cloud TPU to use for training. This should be either the name '
'used when creating the Cloud TPU, or a grpc://ip.address.of.tpu:8470 url.')
flags.DEFINE_integer('num_gpus', 1, 'The number of GPUs to use at each worker.')
_MODE = flags.DEFINE_enum(
'mode', 'train_eval_and_predict',
['train_eval_and_predict', 'train_eval', 'predict'],
'The mode to run the binary. If `train_eval_and_predict` '
'it will (1) train on the training data and (2) evaluate on '
'the validation data and (3) finally generate predictions '
'on the prediction data; if `train_eval`, it will only '
'run training and evaluation; if `predict`, it will only '
'run prediction using the model in `model_dir`.')
# TODO(kitsing) The `params_override` flag is currently not being used.
# Only declared to make xm_job_3p.XMTPUJob happy.
_PARAMS_OVERRIDE = flags.DEFINE_string(
'params_override', '', 'Overridden parameters.'
)
FLAGS = flags.FLAGS
EXPERIMENT_TYPE = 'bert/sentence_prediction'
BEST_CHECKPOINT_EXPORT_SUBDIR = 'best_ckpt'
EVAL_METRIC_MAP = {
'AX': 'matthews_corrcoef',
'COLA': 'matthews_corrcoef',
'MNLI': 'cls_accuracy',
'MRPC': 'f1',
'QNLI': 'cls_accuracy',
'QQP': 'f1',
'RTE': 'cls_accuracy',
'SST-2': 'cls_accuracy',
'STS-B': 'pearson_spearman_corr',
'WNLI': 'cls_accuracy',
}
AX_CLASS_NAMES = ['contradiction', 'entailment', 'neutral']
COLA_CLASS_NAMES = ['0', '1']
MNLI_CLASS_NAMES = ['contradiction', 'entailment', 'neutral']
MRPC_CLASS_NAMES = ['0', '1']
QNLI_CLASS_NAMES = ['entailment', 'not_entailment']
QQP_CLASS_NAMES = ['0', '1']
RTE_CLASS_NAMES = ['entailment', 'not_entailment']
SST_2_CLASS_NAMES = ['0', '1']
WNLI_CLASS_NAMES = ['0', '1']
def _override_exp_config_by_file(exp_config, exp_config_files):
"""Overrides an `ExperimentConfig` object by files."""
for exp_config_file in exp_config_files:
if not tf.io.gfile.exists(exp_config_file):
raise ValueError('%s does not exist.' % exp_config_file)
params_dict.override_params_dict(
exp_config, exp_config_file, is_strict=True)
return exp_config
def _override_exp_config_by_flags(exp_config, input_meta_data):
"""Overrides an `ExperimentConfig` object by flags."""
if FLAGS.task_name in ('AX', 'COLA',):
override_task_cfg_fn = functools.partial(
binary_helper.override_sentence_prediction_task_config,
num_classes=input_meta_data['num_labels'],
metric_type='matthews_corrcoef')
elif FLAGS.task_name in ('MNLI', 'QNLI', 'RTE', 'SST-2',
'WNLI'):
override_task_cfg_fn = functools.partial(
binary_helper.override_sentence_prediction_task_config,
num_classes=input_meta_data['num_labels'])
elif FLAGS.task_name in ('QQP', 'MRPC'):
override_task_cfg_fn = functools.partial(
binary_helper.override_sentence_prediction_task_config,
metric_type='f1',
num_classes=input_meta_data['num_labels'])
elif FLAGS.task_name in ('STS-B',):
override_task_cfg_fn = functools.partial(
binary_helper.override_sentence_prediction_task_config,
num_classes=1,
metric_type='pearson_spearman_corr',
label_type='float')
else:
raise ValueError('Task %s not supported.' % FLAGS.task_name)
binary_helper.override_trainer_cfg(
exp_config.trainer,
learning_rate=FLAGS.learning_rate,
num_epoch=FLAGS.num_epoch,
global_batch_size=FLAGS.global_batch_size,
warmup_ratio=FLAGS.warmup_ratio,
training_data_size=input_meta_data['train_data_size'],
eval_data_size=input_meta_data['eval_data_size'],
num_eval_per_epoch=FLAGS.num_eval_per_epoch,
best_checkpoint_export_subdir=BEST_CHECKPOINT_EXPORT_SUBDIR,
best_checkpoint_eval_metric=EVAL_METRIC_MAP[FLAGS.task_name],
best_checkpoint_metric_comp='higher')
override_task_cfg_fn(
exp_config.task,
model_config_file=FLAGS.model_config_file,
init_checkpoint=FLAGS.init_checkpoint,
hub_module_url=FLAGS.hub_module_url,
global_batch_size=FLAGS.global_batch_size,
train_input_path=FLAGS.train_input_path,
validation_input_path=FLAGS.validation_input_path,
seq_length=input_meta_data['max_seq_length'])
return exp_config
def _get_exp_config(input_meta_data, exp_config_files):
"""Gets an `ExperimentConfig` object."""
exp_config = exp_factory.get_exp_config(EXPERIMENT_TYPE)
if exp_config_files:
logging.info(
'Loading `ExperimentConfig` from file, and flags will be ignored.')
exp_config = _override_exp_config_by_file(exp_config, exp_config_files)
else:
logging.info('Loading `ExperimentConfig` from flags.')
exp_config = _override_exp_config_by_flags(exp_config, input_meta_data)
exp_config.validate()
exp_config.lock()
pp = pprint.PrettyPrinter()
logging.info('Final experiment parameters: %s',
pp.pformat(exp_config.as_dict()))
return exp_config
def _write_submission_file(task, seq_length):
"""Writes submission files that can be uploaded to the leaderboard."""
tf.io.gfile.makedirs(os.path.dirname(FLAGS.test_output_path))
model = task.build_model()
ckpt_file = tf.train.latest_checkpoint(
os.path.join(FLAGS.model_dir, BEST_CHECKPOINT_EXPORT_SUBDIR))
logging.info('Restoring checkpoints from %s', ckpt_file)
checkpoint = tf.train.Checkpoint(model=model)
checkpoint.read(ckpt_file).expect_partial()
write_fn = binary_helper.write_glue_classification
write_fn_map = {
'AX':
functools.partial(
write_fn, class_names=AX_CLASS_NAMES),
'COLA':
functools.partial(
write_fn, class_names=COLA_CLASS_NAMES),
'MNLI':
functools.partial(
write_fn, class_names=MNLI_CLASS_NAMES),
'MRPC':
functools.partial(
write_fn, class_names=MRPC_CLASS_NAMES),
'QNLI':
functools.partial(
write_fn, class_names=QNLI_CLASS_NAMES),
'QQP':
functools.partial(
write_fn, class_names=QQP_CLASS_NAMES),
'RTE':
functools.partial(
write_fn, class_names=RTE_CLASS_NAMES),
'SST-2':
functools.partial(
write_fn, class_names=SST_2_CLASS_NAMES),
'STS-B':
# No class_names (regression), clip predictions to [0.0, 5.0] per glue
# benchmark grader.
functools.partial(
write_fn, class_names=None, label_type='float',
min_float_value=0.0, max_float_value=5.0),
'WNLI':
functools.partial(
write_fn, class_names=WNLI_CLASS_NAMES),
}
logging.info('Predicting %s', FLAGS.test_input_path)
write_fn_map[FLAGS.task_name](
task=task,
model=model,
input_file=FLAGS.test_input_path,
output_file=FLAGS.test_output_path,
predict_batch_size=(
task.task_config.train_data.global_batch_size),
seq_length=seq_length)
def main(argv):
if len(argv) > 1:
raise app.UsageError('Too many command-line arguments.')
glue_flags.validate_flags(FLAGS, file_exists_fn=tf.io.gfile.exists)
gin.parse_config_files_and_bindings(FLAGS.gin_file, FLAGS.gin_params)
distribution_strategy = distribute_utils.get_distribution_strategy(
distribution_strategy=FLAGS.distribution_strategy,
num_gpus=FLAGS.num_gpus,
tpu_address=FLAGS.tpu)
with tf.io.gfile.GFile(FLAGS.input_meta_data_path, 'rb') as reader:
input_meta_data = json.loads(reader.read().decode('utf-8'))
with distribution_strategy.scope():
task = None
if 'train_eval' in _MODE.value:
logging.info('Starting training and eval...')
logging.info('Model dir: %s', FLAGS.model_dir)
exp_config = _get_exp_config(
input_meta_data=input_meta_data,
exp_config_files=FLAGS.config_file)
train_utils.serialize_config(exp_config, FLAGS.model_dir)
task = task_factory.get_task(exp_config.task, logging_dir=FLAGS.model_dir)
train_lib.run_experiment(
distribution_strategy=distribution_strategy,
task=task,
mode='train_and_eval',
params=exp_config,
model_dir=FLAGS.model_dir)
if 'predict' in _MODE.value:
logging.info('Starting predict...')
# When mode is `predict`, `task` will be None.
if task is None:
exp_config = _get_exp_config(
input_meta_data=input_meta_data,
exp_config_files=[os.path.join(FLAGS.model_dir, 'params.yaml')])
task = task_factory.get_task(
exp_config.task, logging_dir=FLAGS.model_dir)
_write_submission_file(task, input_meta_data['max_seq_length'])
if __name__ == '__main__':
glue_flags.define_flags()
flags.mark_flag_as_required('mode')
flags.mark_flag_as_required('task_name')
app.run(main)
|