File size: 9,483 Bytes
5672777
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
# Copyright 2023 The TensorFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

"""Tests for official.nlp.projects.kernel.attention."""
import itertools

from absl.testing import parameterized
import tensorflow as tf, tf_keras

from official.nlp.modeling.layers import kernel_attention as attention


_FEATURE_TRANSFORM = ["relu", "elu", "exp", "expplus"]
_REDRAW = [True, False]
_TRAINING = [True, False]
_IS_SHORT_SEQ = [True, False]
_BEGIN_KERNEL = [0, 512]


class KernelAttentionTest(tf.test.TestCase, parameterized.TestCase):

  # expplus is only designed for bi-directional use case.
  # exp can be numeric unstable.
  @parameterized.parameters(itertools.product(
      ["relu", "elu"], [1, 4], [0.9]))
  def test_causal_windowed_attention_projection_streaming(
      self, feature_transform, causal_chunk_length, causal_weight_decay):
    num_heads = 12
    key_dim = 64
    seq_length = 16
    num_chunks = seq_length // causal_chunk_length
    causal_window_length = num_chunks
    batch_size = 2
    training = False
    num_random_features = 0
    test_layer = attention.KernelAttention(
        num_heads=num_heads,
        key_dim=key_dim,
        feature_transform=feature_transform,
        num_random_features=num_random_features,
        redraw=False,
        is_short_seq=False,
        begin_kernel=False,
        use_causal_windowed=True,
        causal_chunk_length=causal_chunk_length,
        causal_window_length=causal_window_length,
        causal_window_decay=causal_weight_decay,
        causal_padding=None,
        )
    query = tf.random.normal(
        shape=(batch_size, seq_length, key_dim), seed=2)
    value = query
    encoder_inputs_mask = tf.ones((batch_size, seq_length), dtype=tf.int32)
    masks = tf.cast(encoder_inputs_mask, dtype=tf.float32)
    output = test_layer(
        query=query,
        value=value,
        attention_mask=masks,
        training=training)
    dim = num_random_features if num_random_features > 0 else key_dim
    kv_cache = tf.zeros(
        (batch_size, num_heads, dim, dim))
    k_sum_cache = tf.zeros((batch_size, num_heads, dim))
    stream_output = []
    cache = {"kv": kv_cache, "k_sum": k_sum_cache}
    for i in range(num_chunks):
      stream_output.append(
          test_layer(
              query=query[:, i * causal_chunk_length:(i + 1) *
                          causal_chunk_length, :],
              value=value[:, i * causal_chunk_length:(i + 1) *
                          causal_chunk_length, :],
              attention_mask=masks[:, i * causal_chunk_length:(i + 1) *
                                   causal_chunk_length],
              cache=cache,
              training=training))
    stream_output = tf.concat(stream_output, axis=1)
    self.assertAllClose(output, stream_output)

  @parameterized.parameters(
      itertools.product(_FEATURE_TRANSFORM, [127], _TRAINING, [True, False],
                        _IS_SHORT_SEQ, _BEGIN_KERNEL))
  def test_attention_projection(
      self, feature_transform, num_random_features, training, redraw, is_short,
      begin_kernel):
    num_heads = 12
    key_dim = 64
    seq_length = 1024
    batch_size = 2
    test_layer = attention.KernelAttention(
        num_heads=num_heads,
        key_dim=key_dim,
        feature_transform=feature_transform,
        num_random_features=num_random_features,
        redraw=redraw,
        is_short_seq=is_short,
        begin_kernel=begin_kernel)
    query = tf.random.normal(
        shape=(batch_size, seq_length, key_dim))
    value = query
    encoder_inputs_mask = tf.zeros((batch_size, seq_length), dtype=tf.int32)
    masks = tf.cast(encoder_inputs_mask, dtype=tf.float32)
    output = test_layer(
        query=query,
        value=value,
        attention_mask=masks,
        training=training)
    self.assertEqual(output.shape, [batch_size, seq_length, key_dim])

  @parameterized.parameters(
      itertools.product(["relu", "exp"], [127], _TRAINING, [True, False],
                        [0], [None, 0.97], [None, "left", "right"]))
  def test_causal_windowed_attention_projection(
      self, feature_transform, num_random_features, training, redraw,
      begin_kernel, causal_window_decay, causal_padding):
    num_heads = 12
    key_dim = 64
    seq_length = 1024
    batch_size = 2
    test_layer = attention.KernelAttention(
        num_heads=num_heads,
        key_dim=key_dim,
        feature_transform=feature_transform,
        num_random_features=num_random_features,
        redraw=redraw,
        is_short_seq=False,
        begin_kernel=begin_kernel,
        use_causal_windowed=True,
        causal_chunk_length=8,
        causal_window_length=3,
        causal_window_decay=causal_window_decay,
        causal_padding=causal_padding)
    query = tf.random.normal(
        shape=(batch_size, seq_length, key_dim))
    value = query
    encoder_inputs_mask = tf.zeros((batch_size, seq_length), dtype=tf.int32)
    masks = tf.cast(encoder_inputs_mask, dtype=tf.float32)
    output = test_layer(
        query=query,
        value=value,
        attention_mask=masks,
        training=training)
    self.assertEqual(output.shape, [batch_size, seq_length, key_dim])

  @parameterized.parameters(itertools.product(
      _FEATURE_TRANSFORM, [0], _TRAINING, [False],
      _IS_SHORT_SEQ, _BEGIN_KERNEL))
  def test_attention_no_projection(
      self, feature_transform, num_random_features, training, redraw, is_short,
      begin_kernel):
    num_heads = 12
    key_dim = 64
    seq_length = 1024
    batch_size = 2
    test_layer = attention.KernelAttention(
        num_heads=num_heads,
        key_dim=key_dim,
        feature_transform=feature_transform,
        num_random_features=num_random_features,
        redraw=redraw,
        is_short_seq=is_short,
        begin_kernel=begin_kernel)
    query = tf.random.normal(
        shape=(batch_size, seq_length, key_dim))
    value = query
    encoder_inputs_mask = tf.zeros((batch_size, seq_length), dtype=tf.int32)
    masks = tf.cast(encoder_inputs_mask, dtype=tf.float32)
    output = test_layer(
        query=query,
        value=value,
        attention_mask=masks,
        training=training)
    self.assertEqual(output.shape, [batch_size, seq_length, key_dim])

  @parameterized.parameters([128, 512])
  def test_attention_scale_by_length(self, seq_length):
    num_heads = 12
    key_dim = 64
    batch_size = 2
    test_layer = attention.KernelAttention(
        num_heads=num_heads,
        key_dim=key_dim,
        num_random_features=0,
        scale_by_length=True)
    query = tf.random.normal(
        shape=(batch_size, seq_length, key_dim))
    value = query
    encoder_inputs_mask = tf.ones((batch_size, seq_length), dtype=tf.int32)
    masks = tf.cast(encoder_inputs_mask, dtype=tf.float32)
    output_scale_by_length = test_layer(
        query=query, value=value, attention_mask=masks)

    test_layer._scale_by_length = False
    output_no_scale_by_length = test_layer(
        query=query, value=value, attention_mask=masks)
    if seq_length == 512:  # Equals because log(seq_length, base=512) = 1.0
      self.assertAllClose(output_scale_by_length, output_no_scale_by_length)
    else:
      self.assertNotAllClose(output_scale_by_length, output_no_scale_by_length)

  def test_unsupported_feature_transform(self):
    with self.assertRaisesRegex(ValueError, "Unsupported feature_transform.*"):
      _ = attention.KernelAttention(feature_transform="test")

  def test_redraw_true_no_projection(self):
    with self.assertRaisesRegex(
        ValueError, "There is nothing to redraw when num_random_features.*"):
      _ = attention.KernelAttention(
          num_heads=2, key_dim=64, feature_transform="elu",
          num_random_features=0, redraw=True)

  def test_config(self):
    num_heads = 12
    key_dim = 64
    test_layer = attention.KernelAttention(
        num_heads=num_heads,
        key_dim=key_dim,
        feature_transform="exp",
        num_random_features=128,
        is_short_seq=True)
    new_layer = attention.KernelAttention.from_config(
        test_layer.get_config())
    # If the serialization was successful, the new config should match the old.
    self.assertAllEqual(test_layer.get_config(), new_layer.get_config())

  def test_rectangular_window_sum(self):
    x = tf.ones([2, 5, 2, 2, 2])
    winsum = attention.rectangular_window_sum(x, 3)
    self.assertEqual(winsum.shape, x.shape)
    self.assertAllClose(
        tf.tile(
            tf.reshape([1., 2., 3., 3., 3.], [1, -1, 1, 1, 1]),
            [2, 1, 2, 2, 2]),
        winsum)

  def test_weighted_window_sum(self):
    x = tf.ones([2, 5, 2, 2, 2])
    winsum = attention.weighted_window_sum(x, 3, [0.01, 0.1, 1.])
    self.assertEqual(winsum.shape, x.shape)
    self.assertAllClose(
        tf.tile(
            tf.reshape([1., 1.1, 1.11, 1.11, 1.11], [1, -1, 1, 1, 1]),
            [2, 1, 2, 2, 2]),
        winsum)

if __name__ == "__main__":
  tf.test.main()