Spaces:
Sleeping
Sleeping
File size: 9,483 Bytes
5672777 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 |
# Copyright 2023 The TensorFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Tests for official.nlp.projects.kernel.attention."""
import itertools
from absl.testing import parameterized
import tensorflow as tf, tf_keras
from official.nlp.modeling.layers import kernel_attention as attention
_FEATURE_TRANSFORM = ["relu", "elu", "exp", "expplus"]
_REDRAW = [True, False]
_TRAINING = [True, False]
_IS_SHORT_SEQ = [True, False]
_BEGIN_KERNEL = [0, 512]
class KernelAttentionTest(tf.test.TestCase, parameterized.TestCase):
# expplus is only designed for bi-directional use case.
# exp can be numeric unstable.
@parameterized.parameters(itertools.product(
["relu", "elu"], [1, 4], [0.9]))
def test_causal_windowed_attention_projection_streaming(
self, feature_transform, causal_chunk_length, causal_weight_decay):
num_heads = 12
key_dim = 64
seq_length = 16
num_chunks = seq_length // causal_chunk_length
causal_window_length = num_chunks
batch_size = 2
training = False
num_random_features = 0
test_layer = attention.KernelAttention(
num_heads=num_heads,
key_dim=key_dim,
feature_transform=feature_transform,
num_random_features=num_random_features,
redraw=False,
is_short_seq=False,
begin_kernel=False,
use_causal_windowed=True,
causal_chunk_length=causal_chunk_length,
causal_window_length=causal_window_length,
causal_window_decay=causal_weight_decay,
causal_padding=None,
)
query = tf.random.normal(
shape=(batch_size, seq_length, key_dim), seed=2)
value = query
encoder_inputs_mask = tf.ones((batch_size, seq_length), dtype=tf.int32)
masks = tf.cast(encoder_inputs_mask, dtype=tf.float32)
output = test_layer(
query=query,
value=value,
attention_mask=masks,
training=training)
dim = num_random_features if num_random_features > 0 else key_dim
kv_cache = tf.zeros(
(batch_size, num_heads, dim, dim))
k_sum_cache = tf.zeros((batch_size, num_heads, dim))
stream_output = []
cache = {"kv": kv_cache, "k_sum": k_sum_cache}
for i in range(num_chunks):
stream_output.append(
test_layer(
query=query[:, i * causal_chunk_length:(i + 1) *
causal_chunk_length, :],
value=value[:, i * causal_chunk_length:(i + 1) *
causal_chunk_length, :],
attention_mask=masks[:, i * causal_chunk_length:(i + 1) *
causal_chunk_length],
cache=cache,
training=training))
stream_output = tf.concat(stream_output, axis=1)
self.assertAllClose(output, stream_output)
@parameterized.parameters(
itertools.product(_FEATURE_TRANSFORM, [127], _TRAINING, [True, False],
_IS_SHORT_SEQ, _BEGIN_KERNEL))
def test_attention_projection(
self, feature_transform, num_random_features, training, redraw, is_short,
begin_kernel):
num_heads = 12
key_dim = 64
seq_length = 1024
batch_size = 2
test_layer = attention.KernelAttention(
num_heads=num_heads,
key_dim=key_dim,
feature_transform=feature_transform,
num_random_features=num_random_features,
redraw=redraw,
is_short_seq=is_short,
begin_kernel=begin_kernel)
query = tf.random.normal(
shape=(batch_size, seq_length, key_dim))
value = query
encoder_inputs_mask = tf.zeros((batch_size, seq_length), dtype=tf.int32)
masks = tf.cast(encoder_inputs_mask, dtype=tf.float32)
output = test_layer(
query=query,
value=value,
attention_mask=masks,
training=training)
self.assertEqual(output.shape, [batch_size, seq_length, key_dim])
@parameterized.parameters(
itertools.product(["relu", "exp"], [127], _TRAINING, [True, False],
[0], [None, 0.97], [None, "left", "right"]))
def test_causal_windowed_attention_projection(
self, feature_transform, num_random_features, training, redraw,
begin_kernel, causal_window_decay, causal_padding):
num_heads = 12
key_dim = 64
seq_length = 1024
batch_size = 2
test_layer = attention.KernelAttention(
num_heads=num_heads,
key_dim=key_dim,
feature_transform=feature_transform,
num_random_features=num_random_features,
redraw=redraw,
is_short_seq=False,
begin_kernel=begin_kernel,
use_causal_windowed=True,
causal_chunk_length=8,
causal_window_length=3,
causal_window_decay=causal_window_decay,
causal_padding=causal_padding)
query = tf.random.normal(
shape=(batch_size, seq_length, key_dim))
value = query
encoder_inputs_mask = tf.zeros((batch_size, seq_length), dtype=tf.int32)
masks = tf.cast(encoder_inputs_mask, dtype=tf.float32)
output = test_layer(
query=query,
value=value,
attention_mask=masks,
training=training)
self.assertEqual(output.shape, [batch_size, seq_length, key_dim])
@parameterized.parameters(itertools.product(
_FEATURE_TRANSFORM, [0], _TRAINING, [False],
_IS_SHORT_SEQ, _BEGIN_KERNEL))
def test_attention_no_projection(
self, feature_transform, num_random_features, training, redraw, is_short,
begin_kernel):
num_heads = 12
key_dim = 64
seq_length = 1024
batch_size = 2
test_layer = attention.KernelAttention(
num_heads=num_heads,
key_dim=key_dim,
feature_transform=feature_transform,
num_random_features=num_random_features,
redraw=redraw,
is_short_seq=is_short,
begin_kernel=begin_kernel)
query = tf.random.normal(
shape=(batch_size, seq_length, key_dim))
value = query
encoder_inputs_mask = tf.zeros((batch_size, seq_length), dtype=tf.int32)
masks = tf.cast(encoder_inputs_mask, dtype=tf.float32)
output = test_layer(
query=query,
value=value,
attention_mask=masks,
training=training)
self.assertEqual(output.shape, [batch_size, seq_length, key_dim])
@parameterized.parameters([128, 512])
def test_attention_scale_by_length(self, seq_length):
num_heads = 12
key_dim = 64
batch_size = 2
test_layer = attention.KernelAttention(
num_heads=num_heads,
key_dim=key_dim,
num_random_features=0,
scale_by_length=True)
query = tf.random.normal(
shape=(batch_size, seq_length, key_dim))
value = query
encoder_inputs_mask = tf.ones((batch_size, seq_length), dtype=tf.int32)
masks = tf.cast(encoder_inputs_mask, dtype=tf.float32)
output_scale_by_length = test_layer(
query=query, value=value, attention_mask=masks)
test_layer._scale_by_length = False
output_no_scale_by_length = test_layer(
query=query, value=value, attention_mask=masks)
if seq_length == 512: # Equals because log(seq_length, base=512) = 1.0
self.assertAllClose(output_scale_by_length, output_no_scale_by_length)
else:
self.assertNotAllClose(output_scale_by_length, output_no_scale_by_length)
def test_unsupported_feature_transform(self):
with self.assertRaisesRegex(ValueError, "Unsupported feature_transform.*"):
_ = attention.KernelAttention(feature_transform="test")
def test_redraw_true_no_projection(self):
with self.assertRaisesRegex(
ValueError, "There is nothing to redraw when num_random_features.*"):
_ = attention.KernelAttention(
num_heads=2, key_dim=64, feature_transform="elu",
num_random_features=0, redraw=True)
def test_config(self):
num_heads = 12
key_dim = 64
test_layer = attention.KernelAttention(
num_heads=num_heads,
key_dim=key_dim,
feature_transform="exp",
num_random_features=128,
is_short_seq=True)
new_layer = attention.KernelAttention.from_config(
test_layer.get_config())
# If the serialization was successful, the new config should match the old.
self.assertAllEqual(test_layer.get_config(), new_layer.get_config())
def test_rectangular_window_sum(self):
x = tf.ones([2, 5, 2, 2, 2])
winsum = attention.rectangular_window_sum(x, 3)
self.assertEqual(winsum.shape, x.shape)
self.assertAllClose(
tf.tile(
tf.reshape([1., 2., 3., 3., 3.], [1, -1, 1, 1, 1]),
[2, 1, 2, 2, 2]),
winsum)
def test_weighted_window_sum(self):
x = tf.ones([2, 5, 2, 2, 2])
winsum = attention.weighted_window_sum(x, 3, [0.01, 0.1, 1.])
self.assertEqual(winsum.shape, x.shape)
self.assertAllClose(
tf.tile(
tf.reshape([1., 1.1, 1.11, 1.11, 1.11], [1, -1, 1, 1, 1]),
[2, 1, 2, 2, 2]),
winsum)
if __name__ == "__main__":
tf.test.main()
|