Spaces:
Sleeping
Sleeping
File size: 5,947 Bytes
5672777 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 |
# Copyright 2023 The TensorFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Tests for masked language model network."""
from absl.testing import parameterized
import numpy as np
import tensorflow as tf, tf_keras
from official.nlp.modeling.layers import masked_lm
from official.nlp.modeling.networks import bert_encoder
class MaskedLMTest(tf.test.TestCase, parameterized.TestCase):
def create_layer(self,
vocab_size,
hidden_size,
output='predictions',
xformer_stack=None):
# First, create a transformer stack that we can use to get the LM's
# vocabulary weight.
if xformer_stack is None:
xformer_stack = bert_encoder.BertEncoder(
vocab_size=vocab_size,
num_layers=1,
hidden_size=hidden_size,
num_attention_heads=4,
)
# Create a maskedLM from the transformer stack.
test_layer = masked_lm.MaskedLM(
embedding_table=xformer_stack.get_embedding_table(), output=output)
return test_layer
def test_layer_creation(self):
vocab_size = 100
sequence_length = 32
hidden_size = 64
num_predictions = 21
test_layer = self.create_layer(
vocab_size=vocab_size, hidden_size=hidden_size)
# Make sure that the output tensor of the masked LM is the right shape.
lm_input_tensor = tf_keras.Input(shape=(sequence_length, hidden_size))
masked_positions = tf_keras.Input(shape=(num_predictions,), dtype=tf.int32)
output = test_layer(lm_input_tensor, masked_positions=masked_positions)
expected_output_shape = [None, num_predictions, vocab_size]
self.assertEqual(expected_output_shape, output.shape.as_list())
def test_layer_invocation_with_external_logits(self):
vocab_size = 100
sequence_length = 32
hidden_size = 64
num_predictions = 21
xformer_stack = bert_encoder.BertEncoder(
vocab_size=vocab_size,
num_layers=1,
hidden_size=hidden_size,
num_attention_heads=4,
)
test_layer = self.create_layer(
vocab_size=vocab_size,
hidden_size=hidden_size,
xformer_stack=xformer_stack,
output='predictions')
logit_layer = self.create_layer(
vocab_size=vocab_size,
hidden_size=hidden_size,
xformer_stack=xformer_stack,
output='logits')
# Create a model from the masked LM layer.
lm_input_tensor = tf_keras.Input(shape=(sequence_length, hidden_size))
masked_positions = tf_keras.Input(shape=(num_predictions,), dtype=tf.int32)
output = test_layer(lm_input_tensor, masked_positions)
logit_output = logit_layer(lm_input_tensor, masked_positions)
logit_output = tf_keras.layers.Activation(tf.nn.log_softmax)(logit_output)
logit_layer.set_weights(test_layer.get_weights())
model = tf_keras.Model([lm_input_tensor, masked_positions], output)
logits_model = tf_keras.Model(([lm_input_tensor, masked_positions]),
logit_output)
# Invoke the masked LM on some fake data to make sure there are no runtime
# errors in the code.
batch_size = 3
lm_input_data = 10 * np.random.random_sample(
(batch_size, sequence_length, hidden_size))
masked_position_data = np.random.randint(
sequence_length, size=(batch_size, num_predictions))
# ref_outputs = model.predict([lm_input_data, masked_position_data])
# outputs = logits_model.predict([lm_input_data, masked_position_data])
ref_outputs = model([lm_input_data, masked_position_data])
outputs = logits_model([lm_input_data, masked_position_data])
# Ensure that the tensor shapes are correct.
expected_output_shape = (batch_size, num_predictions, vocab_size)
self.assertEqual(expected_output_shape, ref_outputs.shape)
self.assertEqual(expected_output_shape, outputs.shape)
self.assertAllClose(ref_outputs, outputs)
@parameterized.named_parameters(
dict(
testcase_name='default',
num_predictions=21,
),
dict(
testcase_name='zero_predictions',
num_predictions=0,
),
)
def test_layer_invocation(self, num_predictions):
vocab_size = 100
sequence_length = 32
hidden_size = 64
test_layer = self.create_layer(
vocab_size=vocab_size, hidden_size=hidden_size)
# Create a model from the masked LM layer.
lm_input_tensor = tf_keras.Input(shape=(sequence_length, hidden_size))
masked_positions = tf_keras.Input(shape=(num_predictions,), dtype=tf.int32)
output = test_layer(lm_input_tensor, masked_positions)
model = tf_keras.Model([lm_input_tensor, masked_positions], output)
# Invoke the masked LM on some fake data to make sure there are no runtime
# errors in the code.
batch_size = 3
lm_input_data = 10 * np.random.random_sample(
(batch_size, sequence_length, hidden_size))
masked_position_data = np.random.randint(
2, size=(batch_size, num_predictions))
res = model.predict([lm_input_data, masked_position_data])
expected_shape = (batch_size, num_predictions, vocab_size)
self.assertEqual(expected_shape, res.shape)
def test_unknown_output_type_fails(self):
with self.assertRaisesRegex(ValueError, 'Unknown `output` value "bad".*'):
_ = self.create_layer(vocab_size=8, hidden_size=8, output='bad')
if __name__ == '__main__':
tf.test.main()
|