Spaces:
Sleeping
Sleeping
File size: 10,289 Bytes
5672777 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 |
# Copyright 2023 The TensorFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Pack sequence optimization on accelerators."""
from typing import Dict
import tensorflow as tf, tf_keras
from official.modeling import tf_utils
from official.nlp.modeling.layers import rezero_transformer
from official.nlp.modeling.layers import self_attention_mask
from official.nlp.modeling.layers import transformer_encoder_block
from official.nlp.modeling.layers import transformer_scaffold
@tf_keras.utils.register_keras_serializable(package='Text')
class PackBertEmbeddings(tf_keras.layers.Layer):
"""Performs packing tricks for BERT inputs to improve TPU utilization."""
def __init__(self, pack_sequences: int, **kwargs):
super().__init__(**kwargs)
self.pack_sequences = pack_sequences
def call(self, input_embeddings: tf.Tensor,
input_mask: tf.Tensor) -> Dict[str, tf.Tensor]:
batch_size, seq_len, embedding_dim = tf_utils.get_shape_list(
input_embeddings, expected_rank=3)
reduced_batch_size = batch_size // self.pack_sequences
packed_seq_len = self.pack_sequences * seq_len
packed_embeddings = tf.reshape(
input_embeddings, [reduced_batch_size, packed_seq_len, embedding_dim])
input_mask = tf.reshape(input_mask, [reduced_batch_size, packed_seq_len])
example_ids = 1 + tf.range(self.pack_sequences)
# Shape: [batch_size, seq_len, pack_sequences].
example_ids = tf.tile(example_ids[None, :, None],
[reduced_batch_size, 1, seq_len])
example_ids = tf.reshape(example_ids, [reduced_batch_size, packed_seq_len])
example_ids = tf.where(
tf.math.equal(input_mask, 0), tf.zeros_like(example_ids), example_ids)
packing_mask = tf.cast(
tf.equal(
tf.expand_dims(example_ids, 2), tf.expand_dims(example_ids, 1)),
dtype=tf.bool)
attention_mask = self_attention_mask.get_mask(
packed_embeddings, input_mask, dtype=tf.bool)
combined_attention_mask = tf.cast(
tf.math.logical_and(attention_mask, packing_mask), tf.float32)
return dict(
packed_embeddings=packed_embeddings,
combined_attention_mask=combined_attention_mask)
@tf_keras.utils.register_keras_serializable(package='Text')
class StridedTransformerEncoderBlock(
transformer_encoder_block.TransformerEncoderBlock):
"""Transformer layer for packing optimization to stride over inputs."""
def __init__(self, *args, **kwargs):
super().__init__(*args, **kwargs)
if self._output_range is not None:
raise ValueError('StridedTransformerEncoderBlock does not '
'support `output_range` argument.')
def call(self, inputs, stride: tf.Tensor):
if isinstance(inputs, (list, tuple)):
if len(inputs) == 2:
input_tensor, attention_mask = inputs
key_value = None
elif len(inputs) == 3:
input_tensor, key_value, attention_mask = inputs
else:
raise ValueError('Unexpected inputs to %s with length at %d' %
(self.__class__, len(inputs)))
else:
input_tensor, key_value, attention_mask = (inputs, None, None)
if self._norm_first:
source_tensor = input_tensor[:, ::stride, :]
input_tensor = self._attention_layer_norm(input_tensor)
if key_value is not None:
key_value = self._attention_layer_norm_kv(key_value)
target_tensor = input_tensor[:, ::stride, :]
if attention_mask is not None:
attention_mask = attention_mask[:, ::stride, :]
if key_value is None:
key_value = input_tensor
attention_output = self._attention_layer(
query=target_tensor, value=key_value, attention_mask=attention_mask)
attention_output = self._attention_dropout(attention_output)
if self._norm_first:
# Important to not combine `self._norm_first` and
# `self._use_query_residual` into one if clause because else is only for
# `_norm_first == False`.
if self._use_query_residual:
attention_output = source_tensor + attention_output
else:
if self._use_query_residual:
attention_output = target_tensor + attention_output
attention_output = self._attention_layer_norm(attention_output)
if self._norm_first:
source_attention_output = attention_output
attention_output = self._output_layer_norm(attention_output)
inner_output = self._intermediate_dense(attention_output)
inner_output = self._intermediate_activation_layer(inner_output)
inner_output = self._inner_dropout_layer(inner_output)
layer_output = self._output_dense(inner_output)
layer_output = self._output_dropout(layer_output)
if self._norm_first:
return source_attention_output + layer_output
layer_output = tf.cast(layer_output, tf.float32)
return self._output_layer_norm(layer_output + attention_output)
@tf_keras.utils.register_keras_serializable(package='Text')
class StridedReZeroTransformer(rezero_transformer.ReZeroTransformer):
"""ReZeroTransformer for packing optimization to stride over inputs."""
def __init__(self, *args, **kwargs):
super().__init__(*args, **kwargs)
if self._output_range is not None:
raise ValueError(f'{self.__class__} does not '
'support `output_range` argument.')
def call(self, inputs, stride: tf.Tensor):
if isinstance(inputs, (list, tuple)):
if len(inputs) == 2:
input_tensor, attention_mask = inputs
key_value = None
elif len(inputs) == 3:
input_tensor, key_value, attention_mask = inputs
else:
raise ValueError(f'Unexpected inputs to {self.__class__} with '
f'length at {len(inputs)}.')
else:
input_tensor, key_value, attention_mask = (inputs, None, None)
target_tensor = input_tensor[:, ::stride, :]
if attention_mask is not None:
attention_mask = attention_mask[:, ::stride, :]
if key_value is None:
key_value = input_tensor
attention_output = self._attention_layer(
query=target_tensor, value=key_value, attention_mask=attention_mask)
attention_output = self._attention_dropout(attention_output)
attention_output = target_tensor + self._rezero_a * attention_output
if self._use_layer_norm:
attention_output = self._attention_layer_norm(attention_output)
else:
attention_output = tf.cast(attention_output, tf.float32)
intermediate_output = self._intermediate_dense(attention_output)
intermediate_output = self._inner_activation_layer(intermediate_output)
layer_output = self._output_dense(intermediate_output)
layer_output = self._output_dropout(layer_output)
layer_output = attention_output + tf.cast(self._rezero_a_ffn * layer_output,
tf.float32)
if self._use_layer_norm:
layer_output = self._output_layer_norm(layer_output)
return layer_output
@tf_keras.utils.register_keras_serializable(package='Text')
class StridedTransformerScaffold(transformer_scaffold.TransformerScaffold):
"""TransformerScaffold for packing optimization to stride over inputs."""
def call(self, inputs, stride: tf.Tensor, training=None):
if isinstance(inputs, (list, tuple)):
if len(inputs) == 2:
input_tensor, attention_mask = inputs
key_value = None
elif len(inputs) == 3:
input_tensor, key_value, attention_mask = inputs
else:
raise ValueError('Unexpected inputs to %s with length at %d' %
(self.__class__, len(inputs)))
else:
input_tensor, key_value, attention_mask = (inputs, None, None)
if key_value is None:
key_value = input_tensor
if self._norm_first:
source_tensor = input_tensor[:, ::stride, :]
input_tensor = self._attention_layer_norm(input_tensor, training=training)
if attention_mask is not None:
attention_mask = attention_mask[:, ::stride, :]
target_tensor = input_tensor[:, ::stride, :]
attention_output = self._attention_layer(
query=target_tensor,
value=key_value,
attention_mask=attention_mask,
training=training)
attention_output = self._attention_dropout(
attention_output, training=training)
if self._norm_first:
attention_output = source_tensor + attention_output
else:
attention_output = self._attention_layer_norm(
target_tensor + attention_output, training=training)
if self._norm_first:
source_attention_output = attention_output
attention_output = self._output_layer_norm(
attention_output, training=training)
if self._feedforward_block is None:
intermediate_output = self._intermediate_dense(attention_output)
intermediate_output = self._intermediate_activation_layer(
intermediate_output)
layer_output = self._output_dense(intermediate_output, training=training)
layer_output = self._output_dropout(layer_output, training=training)
layer_output = tf.cast(layer_output, tf.float32)
if self._norm_first:
layer_output = source_attention_output + layer_output
else:
layer_output = self._output_layer_norm(
layer_output + attention_output, training=training)
else:
if self._norm_first:
# if norm_first, assume the feedforward block will not apply layer norm
layer_output = self._feedforward_block(
attention_output, training=training)
layer_output += source_attention_output
else:
# if not norm_first, assume that the feedforwad does apply layer norm
layer_output = self._feedforward_block(
attention_output, training=training)
return layer_output
|