File size: 10,289 Bytes
5672777
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
# Copyright 2023 The TensorFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

"""Pack sequence optimization on accelerators."""
from typing import Dict
import tensorflow as tf, tf_keras
from official.modeling import tf_utils
from official.nlp.modeling.layers import rezero_transformer
from official.nlp.modeling.layers import self_attention_mask
from official.nlp.modeling.layers import transformer_encoder_block
from official.nlp.modeling.layers import transformer_scaffold


@tf_keras.utils.register_keras_serializable(package='Text')
class PackBertEmbeddings(tf_keras.layers.Layer):
  """Performs packing tricks for BERT inputs to improve TPU utilization."""

  def __init__(self, pack_sequences: int, **kwargs):
    super().__init__(**kwargs)
    self.pack_sequences = pack_sequences

  def call(self, input_embeddings: tf.Tensor,
           input_mask: tf.Tensor) -> Dict[str, tf.Tensor]:
    batch_size, seq_len, embedding_dim = tf_utils.get_shape_list(
        input_embeddings, expected_rank=3)
    reduced_batch_size = batch_size // self.pack_sequences
    packed_seq_len = self.pack_sequences * seq_len
    packed_embeddings = tf.reshape(
        input_embeddings, [reduced_batch_size, packed_seq_len, embedding_dim])
    input_mask = tf.reshape(input_mask, [reduced_batch_size, packed_seq_len])
    example_ids = 1 + tf.range(self.pack_sequences)
    # Shape: [batch_size, seq_len, pack_sequences].
    example_ids = tf.tile(example_ids[None, :, None],
                          [reduced_batch_size, 1, seq_len])
    example_ids = tf.reshape(example_ids, [reduced_batch_size, packed_seq_len])
    example_ids = tf.where(
        tf.math.equal(input_mask, 0), tf.zeros_like(example_ids), example_ids)
    packing_mask = tf.cast(
        tf.equal(
            tf.expand_dims(example_ids, 2), tf.expand_dims(example_ids, 1)),
        dtype=tf.bool)

    attention_mask = self_attention_mask.get_mask(
        packed_embeddings, input_mask, dtype=tf.bool)

    combined_attention_mask = tf.cast(
        tf.math.logical_and(attention_mask, packing_mask), tf.float32)

    return dict(
        packed_embeddings=packed_embeddings,
        combined_attention_mask=combined_attention_mask)


@tf_keras.utils.register_keras_serializable(package='Text')
class StridedTransformerEncoderBlock(
    transformer_encoder_block.TransformerEncoderBlock):
  """Transformer layer for packing optimization to stride over inputs."""

  def __init__(self, *args, **kwargs):
    super().__init__(*args, **kwargs)
    if self._output_range is not None:
      raise ValueError('StridedTransformerEncoderBlock does not '
                       'support `output_range` argument.')

  def call(self, inputs, stride: tf.Tensor):
    if isinstance(inputs, (list, tuple)):
      if len(inputs) == 2:
        input_tensor, attention_mask = inputs
        key_value = None
      elif len(inputs) == 3:
        input_tensor, key_value, attention_mask = inputs
      else:
        raise ValueError('Unexpected inputs to %s with length at %d' %
                         (self.__class__, len(inputs)))
    else:
      input_tensor, key_value, attention_mask = (inputs, None, None)

    if self._norm_first:
      source_tensor = input_tensor[:, ::stride, :]
      input_tensor = self._attention_layer_norm(input_tensor)
      if key_value is not None:
        key_value = self._attention_layer_norm_kv(key_value)
    target_tensor = input_tensor[:, ::stride, :]
    if attention_mask is not None:
      attention_mask = attention_mask[:, ::stride, :]

    if key_value is None:
      key_value = input_tensor
    attention_output = self._attention_layer(
        query=target_tensor, value=key_value, attention_mask=attention_mask)
    attention_output = self._attention_dropout(attention_output)

    if self._norm_first:
      # Important to not combine `self._norm_first` and
      # `self._use_query_residual` into one if clause because else is only for
      # `_norm_first == False`.
      if self._use_query_residual:
        attention_output = source_tensor + attention_output
    else:
      if self._use_query_residual:
        attention_output = target_tensor + attention_output
      attention_output = self._attention_layer_norm(attention_output)

    if self._norm_first:
      source_attention_output = attention_output
      attention_output = self._output_layer_norm(attention_output)
    inner_output = self._intermediate_dense(attention_output)
    inner_output = self._intermediate_activation_layer(inner_output)
    inner_output = self._inner_dropout_layer(inner_output)
    layer_output = self._output_dense(inner_output)
    layer_output = self._output_dropout(layer_output)

    if self._norm_first:
      return source_attention_output + layer_output

    layer_output = tf.cast(layer_output, tf.float32)
    return self._output_layer_norm(layer_output + attention_output)


@tf_keras.utils.register_keras_serializable(package='Text')
class StridedReZeroTransformer(rezero_transformer.ReZeroTransformer):
  """ReZeroTransformer for packing optimization to stride over inputs."""

  def __init__(self, *args, **kwargs):
    super().__init__(*args, **kwargs)
    if self._output_range is not None:
      raise ValueError(f'{self.__class__} does not '
                       'support `output_range` argument.')

  def call(self, inputs, stride: tf.Tensor):
    if isinstance(inputs, (list, tuple)):
      if len(inputs) == 2:
        input_tensor, attention_mask = inputs
        key_value = None
      elif len(inputs) == 3:
        input_tensor, key_value, attention_mask = inputs
      else:
        raise ValueError(f'Unexpected inputs to {self.__class__} with '
                         f'length at {len(inputs)}.')
    else:
      input_tensor, key_value, attention_mask = (inputs, None, None)

    target_tensor = input_tensor[:, ::stride, :]
    if attention_mask is not None:
      attention_mask = attention_mask[:, ::stride, :]

    if key_value is None:
      key_value = input_tensor

    attention_output = self._attention_layer(
        query=target_tensor, value=key_value, attention_mask=attention_mask)
    attention_output = self._attention_dropout(attention_output)
    attention_output = target_tensor + self._rezero_a * attention_output
    if self._use_layer_norm:
      attention_output = self._attention_layer_norm(attention_output)
    else:
      attention_output = tf.cast(attention_output, tf.float32)

    intermediate_output = self._intermediate_dense(attention_output)
    intermediate_output = self._inner_activation_layer(intermediate_output)
    layer_output = self._output_dense(intermediate_output)
    layer_output = self._output_dropout(layer_output)
    layer_output = attention_output + tf.cast(self._rezero_a_ffn * layer_output,
                                              tf.float32)
    if self._use_layer_norm:
      layer_output = self._output_layer_norm(layer_output)

    return layer_output


@tf_keras.utils.register_keras_serializable(package='Text')
class StridedTransformerScaffold(transformer_scaffold.TransformerScaffold):
  """TransformerScaffold for packing optimization to stride over inputs."""

  def call(self, inputs, stride: tf.Tensor, training=None):
    if isinstance(inputs, (list, tuple)):
      if len(inputs) == 2:
        input_tensor, attention_mask = inputs
        key_value = None
      elif len(inputs) == 3:
        input_tensor, key_value, attention_mask = inputs
      else:
        raise ValueError('Unexpected inputs to %s with length at %d' %
                         (self.__class__, len(inputs)))
    else:
      input_tensor, key_value, attention_mask = (inputs, None, None)

    if key_value is None:
      key_value = input_tensor

    if self._norm_first:
      source_tensor = input_tensor[:, ::stride, :]
      input_tensor = self._attention_layer_norm(input_tensor, training=training)
    if attention_mask is not None:
      attention_mask = attention_mask[:, ::stride, :]
    target_tensor = input_tensor[:, ::stride, :]

    attention_output = self._attention_layer(
        query=target_tensor,
        value=key_value,
        attention_mask=attention_mask,
        training=training)
    attention_output = self._attention_dropout(
        attention_output, training=training)

    if self._norm_first:
      attention_output = source_tensor + attention_output
    else:
      attention_output = self._attention_layer_norm(
          target_tensor + attention_output, training=training)
    if self._norm_first:
      source_attention_output = attention_output
      attention_output = self._output_layer_norm(
          attention_output, training=training)

    if self._feedforward_block is None:
      intermediate_output = self._intermediate_dense(attention_output)
      intermediate_output = self._intermediate_activation_layer(
          intermediate_output)
      layer_output = self._output_dense(intermediate_output, training=training)
      layer_output = self._output_dropout(layer_output, training=training)
      layer_output = tf.cast(layer_output, tf.float32)
      if self._norm_first:
        layer_output = source_attention_output + layer_output
      else:
        layer_output = self._output_layer_norm(
            layer_output + attention_output, training=training)
    else:
      if self._norm_first:
        # if norm_first, assume the feedforward block will not apply layer norm
        layer_output = self._feedforward_block(
            attention_output, training=training)
        layer_output += source_attention_output
      else:
        # if not norm_first, assume that the feedforwad does apply layer norm
        layer_output = self._feedforward_block(
            attention_output, training=training)

    return layer_output